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b I’'m Josh Starmer, and welcome to The
\' % StatQuest lllustrated Guide to Machine
Learning!!! In this book, we'll talk about
% everything, from the very basics to advanced
topics like Neural Networks. All concepts
will be clearly illustrated, and we’ll go
through them one step at a time.
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How This Book Works =
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NOTE: Before we get
started, let’s talk a little bit
about how this book works
by looking at a sample page.

Teaaamen®

Each page starts with a header
that tells you exactly what
concept we're focusing on.

Machine Learning: Main Ideas [

Hey Normalsaurus,
| can you summarize all
of machine learning in
a single sentence?

Sure thing StatSquatch! Machine
# Learning (ML) is a collection of tools
and techniques that transforms data
into (hopefully good) decisions by
making classifications, like whether or
not someone will love a movie, or
quantitative predictions, like how tall
> 1 . someone is.

4

Throughout each
page, you'll see
circled numbers like
W-...‘,, these...

.
.
o

. ...that go from low
o to high, and all you

Norm, are you saying that machine
learning is all about two things? 1) We can
use it to classify things and 2) we can use

R have to do is follow
. it to make quantitative predictions? :‘ them in order for
; D
- D
That's right, “Squatch! It's all about those .: eaCh concept to be
two things. When we use machine leaming x c|ear|y exp]amed_
to classify things, we call it Classification.
And when we make quantitative prediction:

we call it Regression.

BAM! Now that
< you know how

this book works,
let’s get started!!!

S0, let’s get started by talking
about the main ideas of how
machine learning is used for
Classification.

Hey! That’s
me in the
corner!!!




Chapter 01

Fundamental
Concepts in

Machine
Learning!!!




Machine Learning: Main Ideas

* Hey Normalsaurus, %
can you summarize all

of machine learning in £
a single sentence?

; #Sure thing StatSquatch! Machine %,

Learning (ML) is a collection of tools
and techniques that transforms data

into (hopefully good) decisions by

making classifications, like whether or
not someone will love a movie, or

\ quantitative predictions, like how tall #
" someone is.

; Norm, are you saying that machine
learning is all about two things? 1) Wecan ¥
use it to classify things and 2) we can use  §
. it to make quantitative predictions? _#

That’s right, ‘Squatch! It's all about those
two things. When we use machine learning
to classify things, we call it Classification.
, And when we make quantitative predictions,

o we call it Regression. ]

So, let’s get started by talking
about the main ideas of how
machine learning is used for
Classification.



Machine Learning Classification: Main Ideas

10

The Problem: We have For example, we meet this »==+=-..
@ a big pile of data, and person and want to Classify
we want to use it to them as someone who will like
make classifications. StatQuest or not.

«

®

A Solution: We can use our data
to build a Classification Tree
(for details, see Chapter 10) to
Classify a person as someone
who will like StatQuest or not.

Once the Classification Tree is built, we
can use it to make Classifications by
starting at the top and asking the question,
“Are you interested in machine learning?”

; N
.
K

: If you're not interested
(9 BAM!!! ; S i e

Now let’s learn the V -~ 90 to the right...
main ideas of how
machine learning is p " :
’ Are you interested in :
sed for Regression. .
% o . Machine Learning? : @ ...and now we
- ask, “Do you like
& V Silly Songs?”

Then you will Do you like Silly
< StatQue Songs?

And if ybu are

interested in machine Then you will like
learning, then the StatQuest!!!  d

Classification Tree

4

predicts that you will & b | 4
like StatQuest!!! If you’re not interested
A = @ in machine learning

and don't like Silly
Songs, then bummer!

On the other hand, if you like
@ Silly Songs, then the

Classification Tree predicts

that you will like StatQuest!!!




Machine Learning Regression: Main Ideas

The Problem: We have another pile of data, and we want
to use it to make quantitative predictions, which means

that we want to use machine learning to do Regression.

o

0 For example, here we measured the Heights
(o] o “++1200., and Weights of 5 different people.
Height L Because we can see a trend in the data—the
larger the value for Weight, the taller the person—
it seems reasonable to predict Height using
Weight. Thus, when someone new shows up and **
. tells us their Weight, we would like to use that
information to predict their Height.

A Solution: Using a method called Linear
Regression (for details, see Chapter 4), we can

fit a line to the original data we collected and

use that Iir]e to make quantitative pred?)is)

The line, which goes up as the value for Weight

increases, summarizes the trend we saw in the
-....2% data: as a person’s Weight increases, generally
speaking, so does their Height.

‘Weight

Now, if you told me that
this was your Weight,-.,

0

T ™ T
Weight then we could use the ™,
line to predict that thisis  *,

.

,aeenene=- your Height. BAM!!! %

Because there are lots of
machine learning methods
to choose from, let’s talk
about how to pick the best
_one for our problem. _

"



Comparing Machine Learning Methods:

Main Ideas

The Problem: As we'll learn in this book, machine learning consists of a
lot of different methods that allow us to make Classifications or

Quantitative Predictions. How do we choose which one to use?
A/\/
For example, we could 1
use this black line to
predict Height from
. Weight...

Height
...or we could use this
green squiggle to predict
Height from Weight. ",

th

- - , How do we decide to
Weight use the black line or the
green squiggle?

: : s In contrast, the green
A Solution: In machine learning, deciding : :
@ which method to use often means just SEISINE poadicts fiai Lo

trying it and seeing how well it performs. persor E.)e slignty taifes

| L] 1
Weight

v ...the black line
For example predicts this Height.:
given this person’s ]
Weight..
Pra

: Weight

We can compare those two

predictions to the person’s

actual Height to determine
the quality of each prediction.

BAM!!I!

Now that we understand the
Main Ideas of how to compare
machine learning methods, let’s
get a better sense of how we do

this in practice.

12



Comparing Machine Learning Methods:

Intuition Part 1

The original data that we use to In other words, the
observe the trend and fit the line  black line is fit to the
is called Training Data. 5 Training Data.

, Alternatively, we could
have fit a green squiggle
to the Training Data.

The green squiggle
fits the Training Data
A4 better than the black
&+ line, but remember
S . 2 the goal of machine
Weight learning is to make
7 predictions, so we
need a way to

Height

Height ki
determine if the
- black line or the
green squiggle
makes better
So, we collect more data, T T predictions.
called Testing Data... Weight
i
...and we use the
b : Testing Data to compare
Height p the predictions made by
Y the black line to the Mav Nopmalsalniis
1 predictions ma.de oyl don’t };(ou wish we’d gét a
hest warning when new
terminology, like Training
T T 1 Data and Testing Data,
Weight is introduced?

| sure would,
StatSquatch! So, from
this point forward, look for
the dreaded Terminology
Alert!!!




Comparing Machine Learning Methods:

Intuition Part 2

Now, if these blue dots
are the Testing Data...
b

s

Height V
17~ @

Weight
The first person in the
Testing Data had this
Weight... :
" ...and was this tall.
Height | .
2
XQO r ¢
A

Likewise, we measure the error
e between the Observed and
- Predicted values for the second

_.-' person in the Testing Data.

3 Weight

®

...then we can compare their Observed
Heights to the Heights Predicted by the
black line and the green squiggle.

@

Weight

However, the black
line predicts that they
are taller...

...and we can
measure the distance,
or error, between the
Observed and

f Predicted Heights.
%, T 1 ::
Yo Weight ';'

ot

" .

.........
............

We can then add the two
errors together to get a
sense of how close the two

.-+~ Predictions are to the
+" Observed values for the ™

: black line.

4 :
Second ... :

Error ‘-ﬁI >

., Total

+ =
Lr Error

First... "’
Error I



Comparing Machine Learning Methods:

Intuition Part 3

Likewise, we can measure the distances, or errors, between the

Observed Heights and the Heights Predicted by the green squiggle.
3

®

We can then add the two
errors together to get a sense
of how close the Predictions
.+ are to the Observed values
for the green squiggle. *,

.
D

Y

A
—

Weight

Now we can compare the predictions
made by the black line to the predictions
made by the green squiggle by

comparing the sums of the errors.

»e,
S

," Total Green

;,' Squiggle Errors
And we see that the

Second ...
o
Error I ¥

- =, Total Total Black

+ K Error Line Errors sum of the errors for

) the black line is shorter,

suggesting that it did a

better job making

First \
Error i

In other words, even though the

@ green squiggle fit the Training
Data way better than the black
%, line...

predictions.

...the black line did a better

job predicting Height with the
Testing Data.

15



Comparing Machine Learning Methods:

Intuition Part 4

line because it makes bestter
predictions.

So, if we had to choose between
using the blackIne:or t.he_ oD ...we would choose the black
squiggle to make predictions...

The example we just
went through illustrates
2 Main Ideas about
machine learning.

First, we use Testing Data to '
evaluate machine learning methods.

Second, just because a machine

learning method fits the Training

Data well, it doesn’t mean it will
perform well with the Testing Data.

TERMINOLOGY ALERT!!

When a machine learning method fits the Training Data
really well but makes poor predictions, we say that it is
Overfit to the Training Data. Overfitting a machine
learning method is related to something called the Bias-
Variance Tradeoff, and we’ll talk more about that later.

16
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The Main Ideas of Machine Learning
Summary

Now, you may be wonderlng why

we started this book with a super
simple Decision Tree

...and a simple black line
and a silly green i
squiggle...

.
K e,
) ",
)
.
.
.
.
.

|nstead of a Deep Learning

Convolutional Neural Network
ora

[insert newest, fanciest machine

learning method here]

Regression
Logistic Regression
Naive Bayes
Classification Trees

Regression Trees

Support Vector Machines

Neural Networks

L]
There are lots of cool machine
learning methods. In this book
we'll learn about

“**++... machine learning methods, like Deep

L] 1
< -, @ There are tons of fancy-sounding

Learning Convolutional Neural
Networks, and each year something

new and exciting comes along, but
regardless of what you use, the most

important thing is how it performs with
the Testing Data

BAM

Now that we understand some of the
main ideas of machine learning, let’s
learn some fancy terminology so we can

sound smart when we talk about this
stuff at dance parties

K 0
+ .

. ay
gannntt
K
o

o

D

Total Green ™
Squiggle v
< Error  Total Fancy
Method Error
Total Black
Line Error



Terminology Alert!!! Independent and

Dependent Variables

So far, we've been ...from Weight ...and the data have
predicting Height... measurements... all been displayed on
4 5 a nice graph.
_.'"-_ 'I ‘ However, we can also 0.4 11
P . organize the data in a .
: o aeronasanansnsnnaray A O : niCe table, A.‘::::. 1_2 1_9
< 7 : Now, regardiess of A 19 17
Height & whether we look at the 2.0 2.8
4 datain the graph or in the 28 23

table, we can see that -

K
of

Weight varies from person to person,
X—. and thus, Weight is called a Variable.
Weight

Likewise, Height varies from
person to person, so Height
is also called a Variable.

That being said, we can be more specific
about the types of Variables that Height
and Weight represent.

Because our Height predictions depend on Weight measurements, we
call Height a Dependent Variable.

In contrast, because we’re not predicting Weight, and thus, Weight does
not depend on Height, we call Weight an Independent Variable.
Alternatively, Weight can be called a Feature.

it’s very common to use multiple Independent Variables, or
Features, to make predictions. For example, we might use
Weight, Shoe Size and Favorite Color to predict Height.

So far in our examples, we have only used Weight, a single
Independent Variable, or Feature, to predict Height. However,

14 IS [
: Shoe | Favorite - SCe s Bam.
Weight Size Color Height

Now, as we can see in the

0.4 3 Blue 1.1 table, Weight is a numeric
1.9 35 Green 1.9 measurement and Favorite
Color is a discrete category,
1.9 < Green .7 so we have different types of
2.0 4 Pink 2.8 data. Read on to learn more
about these types!!!

2.8 4.5 Blue 23

18



Terminology Alert!!! Discrete and

Continuous Data

i . For example, we can count the number of people
Discrete Data... that love the color green or love the color blue.
...Is countable and only | .Y fer T s

takes specific values. .
. . . individual people, and the
totals can only be whole
. . numbers, the data are

Discrete.
. ) 4 people 3 people
@ American shoe sizes are love green  love blue

. Because we are counting

Discrete because even
though there are half sizes,

like 8 1/2, shoes sizes are Rankings and other orderings are
never 8 7/36 or 9 5/18. also Discrete. There is no award

for coming in 1.68 place. Total

A LA

Continuous Data...

...is measurable and can take :
any numeric value within a range.

For example, Height measurements
are Continuous data. Height measurements can be any

[O)

o= number between 0 and the height of

= 181 cm the tallest person on the planet.

= 152 cm

= NOTE: If we geta /...then the
= more precise ruler... measurements

- L. get more
& ! i » Lt Ts precise.

_d? .‘# gt K
181.73 cm ¥

152.11 cm

’

3

So the precision
of Continuous
measurements is
only limited by the
tools we use.

sl S

19
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# Now we know about different S

types of data and how they can
be used for Training and g
_ Testing. What's next? "

In the next chapter, we'll learn how to
select which data points should be used
for Training and which should be used
for Testing using a technique called
Cross Validation.



Chapter 02

Cross Validation!!!




Cross Validation: Main Ideas
However, usually no one tells us

what is for Training and what is

A, for Testing.

The Problem: So far, we've
simply been told which points
are the Training Data...
...and which LR
; O points are the R O
rTesting Data. : O (>

9 - O * How do we pick
? O the best points
> for Training and
U the best points
for Testing?

A Solution: When we’re not told which data

@ should be used for Training and for Testing,
we can use Cross Validation to figure out
which is which in an unbiased way.

Testing set #1 ..,
I A Rather than worry too
o H much about which specific
: points are best for Training
s and best for Testing,
Cross Validation uses all
points for both in an

i
g . . .
'+ iterative way, meaning that
we use them in steps.

4
+
o
o

_ Testing set #2
@<« -

22



Cross Validation: Details Part 1

Imagine we gathered these 6
pairs of Weight and Height
measurements...

= ...and because we see a
O <. trend that people with larger
o _..==+i% Weights tend to be taller, we
r'S want to use Weight to predict

O O Height...
Height
a O ...s0 we decide to fit a line to the data
O with Linear Regression (for detalils, see

Chapter 4). However, we don’t know

which points to use for Training and
" which to use for Testing.

?2? 7\

A terrible idea would be to us-e/é.and then reuse the exact
all of the data for Training..= same data for Testing... \
4 d

...because the only
way to determine if
a machine learning
method has been
Overfit to the
Training Data is to
try it on new data
that it hasn’t seen
before.

TERMINOLOGY ALERT!!!

Reusing the same data for Training and Testing is called Data
Leakage, and it usually results in you believing the machine learning
method will perform better than it actually does because it is Overfit.

23



Cross Validation: Details Part 2

A slightly better idea is to randomly select
some data to use only for Testing and
* select and use the rest for Training.

.
.
.
"
.

: O O This avoids Data Leakage, but
H how do we know we selected the
best data for Testing?

Cross Validation solves the problem of not knowing which points
are the best for Testing by using them all in an iterative way.
The first step is to randomly assign the data to different groups. In
this example, we divide the data into 3 groups, where each group
consists of 2 points.

Group 1 Group 2 Group 3
r b s, b F2S
49 3 i 0
: G & \ 4
o s o & < d o
; i
) . Then, just like before, we can
Now, in the first Cross measure the errors for each
Validation iteration, ...and Group 3 point in the Testing Data...
we'll use Groups 1 for Testing. ot
and 2 for Training... L "'.
. : . lteration #1:
Black Line
Errors
I ...nowever, unlike
before, we don’t

stop here. Instead,
I we keep iterating so
that Groups 1 and 2
can each get a turn
to be used for
L Testing.

24



Cross Validation: Details Part 3

Because we have 3 groups of data points, we’ll do 3
iterations, which ensures that each group is used for
Testing. The number of iterations are also called
Folds, so this is called 3-Fold Cross Validation.

Gentle Reminder: (o \a
These are the . (o)
| original 3 groups. Al Lo, N
¥ O Group 1 o R
------- . Gyoup

®©

So, these are the
3 iterations of
Training...

the 3 iterations
of Testing.

...and these are

.....
_-

W 9N, / ;
Groups 2 and 3 Group 1
#2 . __) 1 I
L O E I
Groups 1 and 3 Group 2
| o | %
@)
#3 %
lo ]
Groups 1 and 2 roup 3

y.

NOTE: Because each
iteration uses a different
combination of data for
Training, each iteration
*«, results in a slightly

dlfferent fitted line.

A different fitted line
combined with using
different data for Testing
results in each iteration
giving us different
2+ prediction errors.

r\/

We can average
these errors to get a
general sense of how

well this model will
perform with future
data...

(J

..Or we can compare
these errors to errors
made by another
method.

Sey

25



Cross Validation: Details Part 4

For example, we could use 3-Fold
Cross Validation to compare the errors
from the black line to the errors from

the green squiggle.

(o) "
Gentle Reminder: o Y. (o) .
These are the : (o) Y. ..:
' original 3 groups. A L, N
. ¥ O Group 1 o % Group 3
"""" a Group 2

In this case, all 3 iterations of the 3-
Fold Cross Validation show that the
black line does a better job making
predictions than the green squiggle.

@ Training @ Testing

Total
Green
) . i - Squiggle Total
Error Black
Line
= E Error
#1 f
_ ‘ vs.
Groups 2 and 3 Group 1
#2 )
- o vs.
Groups 1 and 3 Group 2
#3 _
J S | - vs.
Groups 1 and 2 Group 3

26

BAM!!!

By using Cross
Validation, we can
be more confident
that the black line
will perform better

with new data
without having to

worry about whether

or not we selected
the best data for

Training and the best

data for Testing.

NOTE: In this

example, the black

line consistently

performed better
than the green

squiggle, but this

isn’t usually the case.
We'll talk more about

this later.



Cross Validation: Details Part 5

When we have a lot of data, 10-Fold
Cross Validation is commonly used.

Imagine that this gray ~ To perform 10-Fold Cross

column represents many Validation, we first
i rows of data. randomize the order of the
: ipskanares -+, data and divide the
g randomized data into 10
: o equal-sized blocks.
v ¥
1
2
3 Then, we
Train using
4 “+ the first 8
5 <" blocks...
¥ ...and Test
6 using the
tenth block.
7 :
8
9
10 <
.., x4

. K

.
. D
. D
. .
LY
. -
.
=
-

Then, we iterate so that each
block is used for Testing.

DOUBLE
BAM!!!

27



Cross Validation: Details Part 6

Another commonly used form of Cross
Validation is called Leave-One-Out.

7'
Leave-One-Out Cross Validation ﬂand uses the one remaining
uses all but one point for Training... point for Testing...

.
v

>

...and then iterates until every single
L.+2#*" point has been used for Testing.

et
-------
.................

Hey Norm, how do |
decide if | should use

; 10-Fold or Leave-One-
% Out Cross Validation? _#

Some experts say that %
when the dataset is
large, use 10-Fold Cross
! Validation, and when the §

% dataset is very small, use 4

%, Leave-One-Out.



Cross Validation: Details Part 7

When we use Cross Validation to
compare machine learning methods,
for example, if we wanted to compare
a black line to a green squiggle...
...sometimes the black line
- ) will perform better than the
green squiggle...
5 Vs. I
Iteration #1
L] | ‘
...and sometimes the black
line will perform worse than

the green squiggle.

I Vs,

And, after doing all of the iterations, we're  and some showing that
the green squiggle is better.
; Iteration #6

A
left with a variety of results, some showing

Iteration #2

that the black line is better...
lteration #3  : Iteration #4 lteration #5 .-
> vs.
w |

vs. I T

TRIPLE
BAM!

" When the results are mixed, how
do we decide which method, if any,
is better? Well, one way to answer
that question is to use Statistics,
and that’s what we’ll talk about in
the next chapter. __*"




Chapter 03

Fundamental
Concepts in

Statistics!!!




Statistics: Main Ideas

The Problem: The world is an
interesting place, and things are

not always the same.

For example, every time we order
french fries, we don’t always get “__...--?

the exact same number of fries. *.,

0
.
‘e

we find in everything and, for the purposes of machine learning, helps us make

A Solution: Statistics provides us with a set of tools to quantify the variation that
predictions and quantify how confident we should be in those predictions.

For example, once we notice that we don’t always
get the exact same number of fries, we can keep
track of the number of fries we get each day...

Fry Diary
Monday: 21 fries
Tuesday: 24 fries
Wednesday: 19 fries
Thursday: ???

...and statistics can help us predict how many fries
we'll get the next time we order them, and it tells us
how confident we should be in that prediction.

L/\_/

m’ggiegi?ja;';jeg’ﬁferv: gsvmeea r:cazwle ...statistics can help us predict who
but hurts gthers peop will be helped by the medicine and
who will be hurt, and it tells us how

confident we should be in that
prediction. This information can help
us make decisions about how to treat
people.

For example, if we predict that the
medicine will help, but we’re not very
confident in that prediction, we might
not recommend the medicine and use
a different therapy to help the patient.

Bummer,

The first step in making predictions is to identify
trends in the data that we’ve collected, so let’s
talk about how to do that with a Histogram.

31



Histograms: Main Ideas

The Problem: We have a lot of We could try to make it easier to

measurements and want to gain see the hidden measurements by

insights into their hidden trends. stacking any that are exactly the
same...

For example, imagine we measured the
Heights of so many people that the data, A1 EXECHy B S3re 515
represented by green dots, overlap, and y
some green dots are completely hidden. v e anga for .Of t.he green

% dots are still hidden.

...but measurements that

Shorter Taller Shorter Taller

A Solution: Histograms are one of the most basic,
but surprisingly useful, statistical tools that we can

use to gain insights into data.

K

Instead of stacking measurements that are
exactly the same, we divide the range of
K * values into bins...

...and stack the
measurements that faII
in the same bin..

30

LT

and we end
up with a
+ histogram!!!

e,
@ OO 4“

Iolol il[ o]

Shorter Taller

The histogram makes it easy to see trends in
the data. In this case, we see that most
people had close to average heights.

BAM!!!

32



Histograms: Details

O

The taller the stack within a bin
the more measurements we
made that fall into that bin.

'..-

Taller

p In Chapter 7, we'll use
histograms to make

classifications using a machine

learning algorithm called Naive 4
Bayes. GET EXCITED!!!

Because most of the

Shorter

@

|o|o|3|§ i §|3| o]
Taller

We can use the histogram to
estimate the probability of
getting future measurements. B

measurements are inside this

red box, we might be willing
to bet that the next

measurement we make will
be somewhere in this range.

.
o

Shorter

make the bins can be

©

NOTE: Figuring out how wide to
tricky.

If the bins are too
wide, then they’re not

LT T T

Extremely short or tall
measurements are rarer and less
likely to happen in the future.

L

L "rraaan
[T
e

...and if the bins are too narrow,
then they’re not much help...

much help...
.,."' 'v,‘ Shorter
» 4 %
...s0, sometimes you have to
try a bunch of different bin
widths to get a clear picture.
v BAM!
Shorter TaIIer 3 s :
Taller

Shorter



Histograms: Calculating Probabilities

Step-by-Step

If we want to estimate the
probability that the next ...we count the number of
measurement will be in measurements, or observations,
EA _______ A P 12 5memamanan
: ...and divide by the 18 Brsereers
: total number of A
:: measurements, 19... \ :
Shorter ROy o /
this means that 63% of the
time we’ll get a measurement

this red box... in the box and get 12..
: —=0.63:
§ §Z A
101018[818
...and we get 0.63. In theory,
in the red box.

However, the confidence we have in this estimate
depends on the number of measurements. Generally
speaking, the more measurements you have, the
more confidence you can have in the estimate.

To estimate the probability that P we count the number of
the next measurement will be in measurements in the box

this red box, which only *-, and get1...
contains the tallest person we '

measured....__~" } e G
. il
A anddivideby 19 foeesenrs
: : the total number
: : of measurements,
0lol8 8l jo] m\ -

Shorter = Taller

...and the result, 0.05, tells us that, in
theory, there’s a 5% chance that the
next measurement will fall within the
box. In other words, it’s fairly rare to
measure someone who is really tall.
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Histograms: Calculating Probabilities

Step-by-Step

To estimate the probability that the
next measurement will be in a red‘/*.we count the nL{mber
box that spans all of the data... of measurements in the

i box, 19...
-" ...'A ant®y
SEARRAASSESAREEARSEIRARS NSRS ARRSARNARANESSNEAS RS S : ‘i‘
i i i ..anddvideby qg:
: : thetotal number 4 A
z s 8 of measurements,
Lolol O] l@]: N\ %

orter s Taller

sesmsmns sssssssssssssssnnnnsnnnnn mesmanan

L TR ...and the result, 1, tells us that
there’s a 100% chance that the
next measurement will fall within

the box. In other words, the

maximum probability is 1.

...we count the number

If we want to estimate the Qi e sniie
probability that the next box,ug_. -
measurement will be in \
thisred box... - !
A S —= 0 2
! : 19 Feenas r
HE ...and divide by the A 4
] total number of T
1 measurements, 19..., . ¢
0101818 |3| o] e
Shorter %.... Taller o / 5

e et ...and we get 0. This is the
minimum probability and, in theory,
it means that we'll never get a
measurement in this box. However,
it could be that the only reason the
box was empty is that we simply
did not measure enough people.

A

If we measure more people, we may either
find someone who fits in this bin or
become more confident that it should be
empty. However, sometimes getting more
measurements can be expensive, or take a
lot of time, or both. This is a problem!!!

The good news is that we can solve this
problem with a Probability Distribution. Bam!
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Probability Distributions: Main Ideas

The Problem: If we don’t have
much data, then we can’t
make very precise probability
estimates with a histogram...

...however, collecting tons of data to

make precise estimates can be time-

consuming and expensive. Is there
another way?

H YES!!

.
o
o
.
D

18188 6]

Shorter Taller ~ Shorter Taller

A Solution: We can use a Probability Distribution, which, in this example, is
represented by a blue, bell- shaped curve, to approximate a histogram.

©,

This blue, bell-shaped

curve tells us the same

types of things that the
histogram tells us.

For example, the
relatively large amount of
*r=x..,, area under the curve in
this red box tells us that

0 v there’s a relatively high
Shorter fasmsmssssrssssesssmsnst Taller probablllty that we will

measure someone whose
Now, even though we never ...we can use the area value falls in this region.
measured someone who’s under the curve to
value fell in this range... estimate the probability
of measuring a value in

this range.
NOTE: Because we have

Discrete and Continuous
% data.. "

...there are Discrete and
Continuous Probability
Distributions.

So let’s start by learning about

< Discrete Probability Distributions.



Discrete Probability Distributions: Main Ideas

The Problem: Although, technically speaking,
histograms are Discrete Distributions, meaning

data can be put into discrete bins and we can

-..they require that we collect a
lot of data, and it’s not always
clear what we should do with

blank spaces in the histograms.

Shorter e Taller

a ton of data to make a histogram and then worrying about
blank spaces when calculating probabilities, we can let

@A Solution: When we have discrete data, instead of collecting
mathematical equations do all of the hard work for us.

One of the most commonly used As you can see, it’s a mathematical
Discrete Probability Distributions equation, so it doesn’t depend on
is the Binomial Distribution. collecting tons of data, but, at least to
StatSquatch, it looks super scary!!!

.
o+ .
.
.

F. The Binomial
! Distribution makes
— X _ n—x me want to run
fp(x[n, p)= x!(n —x)! p*(1-p) away and hide,

The good news is that, deep down inside, the
Binomial Distribution is really simple.
However, before we go through it one step a

time, let’s try to understand the main ideas of
what makes the equation so useful.

Don’t be scared
‘Squatch. If you keep
reading, you'll find that
it's not as bad as it
looks.
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The Binomial Distribution: Main Ideas Part 1

First, let’s imagine we’re Pumpkin Pie Blueberry Pie
walking down the street in : i

StatLand and we ask the
first 3 people we meet if
they prefer pumpkin pie or
blueberry pie...

...and the first 2 people say M .and the last person
prefer pumpkin pie... says they prefer

blueberry pie.

Based on our extensive experience judging pie contests in StatLand, we
know that 70% of people prefer pumpkin pie, while 30% prefer blueberry
pie. So now let’s calculate the probability of observing that the first two
people prefer pumpkin pie and the third person prefers blueberry.

...and the probability that the

The probability ...and the probability that first two people will prefer
that the first the first two people will pumpkin pie and the third person
person will prefer prefer pumpkin pie is 0.49. = prefers blueberry is 0.147.
pumpkin pie is
0_-7--- (Psst! If thismath is % (Again, if this math is
: blowing your mind, H blowing your mind, :
check out Appendix A.) check out Appendix A.) y
0.7 0.7x0.7 =049 £ 0.7x 0.7 x 0.3 = 0.147
NOTE: 0.147 is the probability of ...it is not the probability that 2 out of
observing that the first two people 3 people prefer pumpkin pie.
. prefer pumpkin pie and the third
person prefers blueberry... Let’s find out why on the next page!!!
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The Binomial Distribution: Main Ideas Part 2

It could have just as easily been the
case that the first person said they
prefer blueberry and the last two

said they prefer pumpkin. In this case, we would

multiply the numbers

together in a different
order, but the probability
... would still be 0.147 (see
Appendix A for details).

0.3x0.7 x0.7 = 0.147

Likewise, if only the second
person said they prefer
blueberry, we would multiply

the numbers together in a
different order and still get
0.147. ..,

So, we see that all three
combinations are
equally probable... |
LVA o07703x07i-0.a7:

0.7x0.3x 0.7 = 0.147

” 0.7 x0.7 x 0.3:= 0.147 |
Sessmsssnnnes d
...and that means that the probability of observing that 2
out of 3 people prefer pumpkin pie is the sum of the 3
possible arrangements of people’s pie preferences, 0.441.
.L ................... ‘:
"A i 0.147 i NOTE: Calculating by
o ; hand the probability of
i observing that 2 out of 3

people prefer pumpkin
pie was not that bad. All
: we did was draw the 3
+ :  different ways 2 out of 3
: people might prefer
pumpkin pie, calculate
the probability of each
way, and add up the

probabilities.

Bam.

39



The Binomial Distribution: Main Ideas Part 3

However, things quickly get tedious when we start
asking more people which pie they prefer.
For example, if we Ai‘.‘
wanted to
calculate the «
probability of
observing that 2 ...and there are 10 .,
‘v ‘ ' out of 4 people ways to arrange 3 d

prefer pumpkin out of 5 peopl‘e who
pie, we have to prefer pumpkin pie.

calcutgte gpd sum UGH!! Drawing all of "A'A
‘ p theindividual these slices of delicious
*.,, probabilities from pie is super tedious.
"= 6 different
,° arrangements...

+

yosod R 7Y

So, instead of drawing out different arrangements of
pie slices, we can use the equation for the Binomial

Distribution to calculate the probabilities directly.

AYA /Y

= !
!
— X, n—x
px|n, p)=| — - "1 =p)
x(n — 1)! BAM!!!
In the next pages, we'll use the
Binomial Distribution to calculate the
probabilities of pie preference among 3
people, but it works in any situation that
has binary outcomes, like wins and
_ losses, yeses and noes, or successes
” 0.3x 0.7 x 0.7 = 0.147 el
+
Av 0.7x0.3x0.7=0.147 = 0.441

o

A'A 0.7 x0.7 x 0.3 = 0.147 Now that we understand why the

equation for the Binomial Distribution
is so useful, let’s walk through, one step
at a time, how the equation calculates
the probability of observing 2 out of 3
people who prefer pumpkin pie.
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The Binomial Distribution: Details Part 1

First, let’s focus on just the
left-hand side of the equation.

...and this p is the

In our pie example, x is the ;
number of people who "e'g IIZ t\zz Z‘SJE.' ?ﬁiﬁfs probability that someone
prefer pumpkin pie, so in P Fc):ase . 3 prefers pumpkin pie. In
this case, x =2... vl this case, p = 0.7...
vV ¥
plx|n, p)
A AT,

"
-----
---------- *e,

i B ) and the comma
...this p means ...the vertical bar or pipe symbol between n and p
probability. means given or given that... means and

/\/

So, the left-hand side of
the equation reads:

._‘
: “The probability we meet x = 2
p(x | n, p) = pgople who prefer pumpkin pie,
given that we ask n = 3 people
and the probability of someone
preferring pumpkin pie is p = 0.7.”

BAM!

.
ot
+
.

.
ot
.

Gentle Reminder: We're
using the equation for the
Binomial Distribution to
calculate the probability
that 2 out of 3 people
prefer pumpkin pie...

.
.
.

0.3x0.7x0.7 = 0.147

/g

0.7x0.3x0.7 =0.147

0.7x0.7x0.3 = 0.147 :

&6 )

= 0.441

YUM! |
love pielll

h g




The Binomial Distribution: Details Part 2

Now, let’s look at the first part on the right-hand side of the
equation. StatSquatch says it looks scary because it has factorials

(the exclamation points; see below for details), but it's not that bad
m

A
Despite the factorials, the first term simply ~..and, as we saw earlier, there are 3
represents the number of different ways we can different ways that 2 out of 3 people
meet 3 people, 2 of whom prefer pumpkin pie... we meet can prefer pumpkin pie. -

= n! ;

xl(n—x)!

When we plug in

x 2, the number
of people who ..and n = 3, the number of ...we get 3, the same
prefer pumpkin people we asked, and then number we got when we
pie... do the math.. did everything by hand. ‘-‘
n! 3! 3! 3x2x1
= = =] =3 L
xln-x)! 2!(@3-2)! 20 (1) 2x1x1 1'
: Gentle Reminder: We're
NOTE: If x is the number of people who using the equation for the
prefer pumpkin pie, and n is the total . Binomial Distribution to
number of people, then (n - x) = the number - calculate the probability
of people who prefer blueberry pie. that 2 out of 3 people
prefer pumpkin pie...

.
)
)
.

03x0.7x0.7=04147 %
A factorial—indicated by an )

p 7 7.
i exclamation point—is just the product e e g

of the integer number and all positive
07x07x03=0.447

integers below it. For example, .

=0.441

Hey Norm,
what'’s a
factorial?




The Binomial Distribution: Details Part 3

Now let’s look at the second

gannet® ..,

2

probability that 2 out of the

people prefer pumpkin pie.
»
X

.

...because if p is the probability
that someone prefers pumpkin

The third and final
someone prefers blueberry pie..

@ term is the probability
that 1 out of 3 people
prefers blueberry pie...
(I-py
~
i So, in this example, if we plug in
$ p=0.7,n=3, and x = 2, we get 0.3.
\]

v
(-pyp-x=(1-0.732=0.3"=0.3
£

Just so you know, sometimes
peopleletg = (1 - p), and use g
in the formula instead of (1 - p).

...and there are x = 2 people

who prefer pumpkin pie, the
second term = 0.72=0.7x 0.7,

@ term on the right hand side.
The second term is just the In other words, since p, the
3 probability that someone
prefers pumpkin pie, is 0.7. =

pie, (1 - p) is the probability that

and if x is the number

mof people who prefer

pumpkin pie and n is
the total number of

people we asked, then
n - x is the number of
people who prefer
blueberry pie.

Gentle Reminder: We're
using the equation for the
Binomial Distribution to
calculate the probability
that 2 out of 3 people

prefer pumpkin pie...

.

.
.
.
.

0.3x0.7x0.7=0.147

0.7x0.3x0.7 =0.147

5\ /AN +

x 0.3 = 0.147

g
*e
.
.
.
teay, 0
Besagunst

4
= 0.441
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The Binomial Distribution: Details Part 4

Now that we’ve looked at each part of the equation for the
Binomial Distribution, let’s put everything together and solve for
the probability that 2 out of 3 people we mest prefer pumpkin pie.

We start by plugging in the number of people who prefer pumpkin
pie, x = 2, the number of people we asked, n = 3, and the \
probability that someone prefers pumpkin pie, p = 0.7... %,

5 "ty
. . . L
. . &

e / e,
n! v h
px=2|n=3,p=07)=| ———— |p* - p)"™*
x!(n—x)!

...then we just

do the math... 5l
o = ——— )0.7°(1 - 0.7)*"2
¥ \2!3-2)!
(Psst! Remember: the first term is

the number of ways we can
arrange the pie preferences, the “*=-..,
second term is the probability that Ty
2 people prefer pumpkin pie, and — 2 1
the last term is the probability that - 3 X 07 X (03)
1 person prefers blueberry pie.)

=3 x 0.7 x 0.7 <

Gentle Reminder: We're

using the equation for the

Binomial Distribution to
calculate the probability

that 2 out of 3 people .
prefer pumpkin pie... ...and the result is 0.441,

i vwhich is the same value we

03x0.7x07=0147 = got when we drew pictures

0 .= Of the slices of pie.

0. X 03 X .7 =0.147 "....,. = T R I P L E
:ﬁgﬂﬁ 4 i¥

0.7 x0.7 x 0.3 = 0.147

s96°" /| BAMI!

14
= 0.441

e

Tt gana.
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Hey Norm, | sort of understand the
Binomial Distribution. Is there another
commonly used Discrete Distribution that
you think | should know about?

¢ Sure ‘Squatch. We should
{ probably also learn about the
%, Poisson Distribution. _4*
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The Poisson Distribution: Details

So far, we’ve seen how the Binomial Distribution gives us
probabilities for sequences of binary outcomes, like 2 out of 3
people preferring pumpkin pie, but there are lots of other Discrete
Probability Distributions for lots of different situations.

For example, if you can read, on average, 10 pages of
this book in an hour, then you can use the Poisson
Distribution to calculate the probability that in the next

.........
. e,
.

hour, you'll read exactly 8 pages.
/—\/ : NOTE: This ‘¢’ is

K V Euler’s number, which
The equation for the Poisson " 2 is roughly 2.72.
Distribution looks super fancy e ﬂ,x

because it uses the Greek «=--**" p(x | /1) = —

character A, lambda, but lambda < x[

is just the average. So, in this

example, A = 10 pages an hour. —A x is the number of pages we

think we might read in the next
hour. In this example, x = 8.

Now we just plug in the -/\A
@ numbers and do the math..: ...and we get 0.113. So the
)

probability that you’ll read
g exactly 8 pages in the next hour,
given that, on average, you read

- =
o - . 10 pages per hour, is 0.113.
e ® e 108 :
10) = =
x! 8! DR

50

o

‘:
plx=8|4=

B 010108 v
C8XTX6X5X4X3IX2X1

| sure am glad that |
learned about factorials a
few pages ago!

I’'m proud of you for
learning so quickly
‘Squatch!



Discrete Probability Distributions: Summary

@ To summarize, we've seen that ...and while these can be useful, they
Discrete Probability Distributions require a lot of data that can be
can be derived from histograms.... expensive and time-consuming to get,
E and it’s not always clear what to do
about the.blank spaces.

M@ ......

Shorter neenat Taller

So, we usually use mathematical
equations, like the equation for the

Binomial Distribution, instead.

pix|n, p) = = p(l-p"

The Binomial Distribution is useful for anything that has
binary outcomes (wins and losses, yeses and noes, etc.), but
there are lots of other Discrete Probability Distributions.

For example, when we have events that happen
in discrete units of time or space, like reading 10
pages an hour, we can use the Poisson
Distribution.

e~*)x
plali) = ——
x!

lots of other types of data. In general, their equations look
intimidating, but looks are deceiving. Once you know what each
symbol means, you just plug in the numbers and do the math.

BAM!!!

Now let’s talk about Continuous
Probability Distributions.

@ There are lots of other Discrete Probability Distributions for
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Continuous Probability Distributions:

Main Ideas

The Problem: Although they can be super useful,
beyond needing a lot of data, histograms have

two problems when it comes to continuous data:

+wny 1) it’s not always clear
: what to do about gaps

in the data and...)

8
H o
- &£

...2) histograms can be very
sensitive to the size of the bins.

If the bins are too
,.uenz¢ Wide, then we lose

PTTLL

PRI " all of the precision...
o ‘:.‘ )

...and if the bins are too
narrow, it's impossible to
see trends.

Shorter 7 7 Taller

oas
Shorter

Taller

A Solution: When we have continuous data, a
Continuous Distribution allows us to avoid all of
these problems by using mathematical formulas
just like we did with Discrete Distributions.

_—~P In this example, we can use a
Normal Distribution, which
creates a bell-shaped curve,
,..+++« instead of a histogram. It
doesn’t have a gap, and there’s
no need to fiddle with bin size.

.
o

There are lots of commonly used
Continuous Distributions. Now
we'll talk about the most useful
of all, the Normal Distribution.
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The Normal (Gaussian) Distribution:

Main Ideas Part 1

Chances are you've It's also called a Bell-Shaped Curve because it's
seen a Normal or a symmetrical curve...that looks like a bell.
Gaussian

distribution
before.

A Normal distribution is symmetrical
about the mean, or average, value.

-« In this example, the

curve represents human
Shorter Average Height Taller vz, , e Height measurements.
NOTE: The Normal
The y-axis represents the Likelihood Distribution’s maximum
of observmg any specific Height. likelihood value occurs
o A" atits mean.
. More Likely < A
4
Less Likely
A Shorter Average Height Taller A
i Y.y ;

For example, it’s relatively
rare to see someone who

is super short...

Here are two Normal
Distributions of the

heights of male infants

...relatively common to
see someone who is close
to the average height...

...and relatively rare
to see someone
who is super tall.

Because the normal distribution for infants has
a higher peak than the one for adults, we can

..+ See that there’s a higher likelihood that an infant
and adults. e will be close to its mean than an adult will be
i A i close to its mean. The difference in peak height
B %, tells us there’s less variation in how tall an infant
The average . is compared to how tall an adult is.
> N male infant is e,
50 cmtall...  --andthe

average male :
adultis 177 cm

Lots of things can be
approximated with Normal

tall s g Distributions: Height, birth
. = Adult L A weight, blood pressure, job
/q \ satisfaction, and many
. - = : more!l!
50 100 150 200
Height in cm.



The Normal (Gaussian) Distribution:

Main Ideas Part 2

The width of a Normal
Distribution is defined by
the standard deviation.

In this example, the standard deviation
for infants, 1.5, is smaller than the

standard deviation for adults, 10.2.

The relatively small

standard deviation for

lnfan_ts results in quants ...compared to adults, who have
having a taller, thinner a shorter, wider curve.

curve..s

M = infant
B = Adult

03
. .
.
Tenaanet?
T

150
A

Height in cm.

-':v

100

Knowing the standard deviation is

A A
: helpful because normal curves are
: drawn such that about 95% of the y
: measurements fall between +/- 2

5 Standard Deviations around the Mean.
Because the mean ‘_/\_/v ;
Because the mean adult
measurement is 177 cm, and
2 x the standard deviation =
2 x10.2 = 20.4, about 95% of

measurement for infants
is 50 cm, and
2 x the standard deviation =
2 x 1.5 =3, about 95% of the
the adult measurements fall
between 156.6 and 197.4 cm.

infant measurements fall
between 47 and 53 cm.
To draw a Normal Distribution,
you need to know:
‘ | N N |

1) The Mean or average
- measurement. This tells you where
the center of the curve goes.

2) The Standard Deviation of the
measurements. This tells you how
tall and skinny, or short and fat, the
curve should be.
If you don’t already know about
the Mean and Standard
Deviation, check out Appendix B

.

‘Squatch, he
was a normal

guy!!!

Hey Norm, can
you tell me what

Gauss was like?
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The Normal (Gaussian) Distribution: Details

The equation for the Normal Distribution looks
scary, but, just like every other equation, it’s just a «

matter of plugging in numbers and doing the math.

.,
.

1 9 2 .

fxlp, 0) = ———e W20 g
\/ 2n6?
To see how the equation for the %

@ Normal Distribution works,

let’s calculate the likelihood (the

y-axis coordinate) for an infant.;"

that is 50 cm tall. s«aue=*"

Since the mean of the

distribution is also 50 cm,

we’ll calculate the y-axis
coordinate for the highest

]
part of the curve. _ 50
Height in cm.
2,2
f(xllu, O') = e—(x—,u) 20
____________ g A A 27rc72
x is the x-axis 0 e
coordinate. So, in -.':rhe Grsle CHArACTE Lastly, the Greek character o,
this gxample, the x- "{h'g';j'égﬁrgfsfﬁés sigma, represents the standard
axisirepr esents distribution. In this deviation of the distribution. In
Height and x= 50. s _' 50 this case, 0= 1.5.

id -
+* B RCTTTT LM

! p ¥ 29 2
fx=50|u=50,06=1.5) = ———¢ @W0

Remember, the

R0 &M\2 2
(4 |y lgle g Now, we just do
output from the

271.1.52 the math...

iy

equation, the y-axis
(-\—/ coordinate, is a
likelihood, not a
— 1 6—02/4.5 ...and we see that the likelihood, probability. In
the y-axis coordinate, for the Chapter 7, we'll see
V 14 1 tallest point on the curve, is 0.2.7. how likelihoods are
: used in Naive Bayes.
1 0 1 pranTmeeenee - . To learn how to
= e =—i= 027 : < calculate probabilities
14.1 : - with Continuous

Distributions, read #
One:
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Calculating Probabilities with Continuous

Probability Distributions: Details

For Continuous Probability Distributions, probabilities
are the area under the curve between two points. For example, given this

Normal Distribution with
,.eseersesimean = 155.7 and standard
deviation = 6.6, the probability

of getting a measurement
between 142.5 and 155.7
cm...

142.5 cm i 155.7cm 168.9 cm
= Heightin cm

...Is equal to this area under the curve, which in this example is 0.48.
So, the probability is 0.48 that we will measure someone in this range.

There are two ways to
calculate the area under the
curve between two points:

Regardless of ...or short and fat

a distribution is... 1) The hard way, by
hoviz_ tall and " using calculus and
SAES integrating the
e equation between the
‘/ two points a and b. 2) The easy way, by
’ b using a computer.
...the total area under its curve is 1. Meaning, J f (x) dx ‘ Selg tl‘\ﬂpendlx Cc:or
the probability of measuring anything in the a H ISt ot cominan S“
range of possible values is 1. UGH!"! NO ONE * fArea = 0.48
ACTUALLY DOES THIS!!!
111
One confusing thing about Bfi,-
Continuous Distributions is that |
..« the likelihood for a specific '

measurement, like 155.7, is the y-

152 axis coordinate and > 0"‘ y One way to understand
o ...but the probability o
Likelihood = for shedific why the probability is 0 is

e surgment s to remember that

al 0 probabilities are areas,
aways . and the area of something
with no width is 0.

142.5 cm 155.7 cm 168.9 cm

Another way to understand why the probability for a specific value,
rather than a range of values, is 0 is to realize that a continuous
distribution has infinite precision, thus, we’re really asking the probability
of measuring someone who is exactly
155.7000000000000000000000000000000000000000000000000000000

Py 00000000000000000000000000000000000000000000000000000... tall.



Norm, the Normal Distribution is
awesome, and, to be honest, it sort of
looks like you, which is cool, but are there
other Continuous Distributions we
should know about?

# Sure ‘Squatch! We should

¥ probably also learn about the %

% Exponential and Uniform ¥
oS Distributions. -
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Other Continuous Distributions: Main Ideas

Exponential Distributions are commonly used when
we're interested in how much time passes between

@ events. For example, we could measure how many
minutes pass between page turns in this book.

More Likely

Less Likely

Y In contrast, if | wanted to
generate random numbers

between 0 and 5, then | would

use a Uniform Distribution that

goes from 0 to 5, which is called
a Uniform 0,5 Distribution.

Uniform Distributions are commonly

@ used to generate random numbers
that are equally likely to occur.
For example, if | want to select random

numbers between 0 and 1, then | would use a
Uniform Distribution that goes from 0 to 1,
which is called a Uniform 0,1 Distribution,
because it ensures that every value between .
0 and 1 is equally likely to occur. ..-'
" Uniform Distributions can
e g span any 2 numbers, so
& 4 .:' we could have a Uniform
More Likely : s 1,3.5 Distribution if we
: _:' wanted one.
¥ I_I* :
v
0 .y 5 0 1 3.5

Less Likely
iyl
NOTE: Because the distance between 0 and 1 is shorter than
between 0 and 5, we see that the corresponding likelihood \
for any specific number is higher for the Uniform 0,1
Distribution than the Uniform 0,5 Distribution.

Using Distributions To Generate Random Numbers

We can get a computer to generate numbers that reflect the likelihoods of
any distribution. In machine learning, we usually need to generate random

numbers to initialize algorithms before training them with Training Data.

Random numbers are also useful for randomizing the order of our data,

which is useful for the same reasons we shuffle a deck of cards before
playing a game. We want to make sure everything is randomized.
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Continuous Probability Distributions:

Summary

Just like Discrete Distributions, Gontinuous
Distributions spare us from having to gather

tons of data for a histogram...

05 181 cm *
= 152 cm
- X
— @
: IoIII 181818| o]
—_ Shorter Taller
...and, additionally,
Continuous Distributions
also spare us from having
to decide how to bin the
AN
data.
‘.‘. ...'A
s |
., Shorter
Instead, Continuous Distributions ., ",
use equations that represent smooth Vs.
curves and can provide likelihoods 3 «{
and probabilities for all possible : o
measurements. i -.“ Shrer fhe
1 y
_ —(x—p)*206? :
fxlp, 0) = ——=e 7

\/ 2nc? 5

Shorter Averagt; Height Taller

Like Discrete Distributions, there
are Continuous Distributions for
all kinds of data, like the values we
get from measuring people’s
height or timing how long it takes
you to read this page.

In the context of machine learning, both types
of distributions allow us to create Models that
can predict what will happen next.

So, let’s talk about what Models are and how
to use them.
(small but mighty) BAM!!!
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Models: Main Ideas Part 1

The Problem: Although we could
spend a lot of time and money to
build a precise histogram...

...collecting all of the

|_g I ; | ; I Ll data in the world is
usually impossible.

Shorter Taller
|o|s|3| | |§|3| @]
Shorter Taller @

Taller

Shorter

A Solution: A statistical,
mathematical, or machine
learning Model provides an

approximation of reality that

we can use in a wide variety

of ways.

Another commonly used model is
the equation for a straight line.
Here, we're using a blue line to

model a relationship between
Weight and Height.

A Probability Distribution is a I
type of model that approximates P
+ a histogram with an infinite P
: amount of data. 4 e

\

Height = 0.5 + (0.8 x Weight)

Weight

Taller

Shorter

56



Models: Main Ideas Part 2

As we saw in Chapter 1, models need Training
Data. Using machine learning lingo, we say that we

.

: build models by training machine learning

: algorithms.
Models, or equations, can
‘ ./ tell us about people we
o @ haven’t measured yet.
Height %70
O . ; For example, if we
Helght =0.5+(0.8x Welght) X g want to know how tall
‘ someone is who
Weight Height weighs t.tus much...
...we plug the
Weight into the
equation and solve
for Height...
Height = 0.5 + (0.8 x Weight)
Because models are only ——
@ approximations, it’s important Height = 0.5 + (0.8 x2.1) Y. and get
that we're able to measure the Height = 2,18 <= rmeeniin’y 18
quality of their predictions. T

These green lines show the
distances from the model’s

predictions to the actual data points.
- "“ In summary:
y ? d 6/ 1) Models approximate reality

to let us explore relationships

7 |7 4 and make predictions.
4 A lot of statistics is
dedicated to 2) In machine learning, we build
J O i quantifying the models by training machine learning
quality of the algorithms with Training Data.
predictions made
by a model. 3) Statistics can be used to
I 7 ] determine if a model is

useful or believable.

Bam!

Now let’s talk about how statistics can
quantify the quality of a model. The first
step is to learn about the Sum of the
Squared Residuals, which is something
. We'll use throughout this book.
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The Sum of the Squared Residuals:

Main Ideas Part 1

The Problem: We have a model that makes
predictions. In this case, we’re using Weight to ..., .,..==*"
p

redict Height. However, we need to quantify the
quality of the model and its predictions.

A Solution: One way guantify the quality of a
model and its predictions is to calculate the
Sum of the Squared Residuals.

Weight

As the name implies, we start by calculating
ed/_A Visually, we can draw

Residuals, the differences between the Observ
£ values and the values Predicted by the model.

1
Residual = Observed - Predicted |

Since, in general, the smaller the Residuals,

the better the model fits the data, it’s tempting
to compare models by comparing the sum of
their Residuals, but the Residuals below the
blue line would cancel out the ones above it!!!

So, instead of calculating the sum of the Residuals,
we square the Residuals first and calculate the
Sum of the Squared Residuals (SSR).

Residuals with these
green lines.

cy
.

0
0
%

) /g

' The Sum of Squared Residuals (SSR)
is usually defined with fancy Sigma notation and the
right-hand side reads: “The sum of all squared

n = the number of
differences between the observed and predicted

Observations.
'. Values.” asmsEEEEREEmEg,
2T 7 Rt ”

i =the index for L
each Observation. SSR =Z(Observed,- - Predicted;)?
For example, i =1

refers to the first «. & yi=1

Observation.  § "o
NOTE: Squaring, as opposed to taking the

absolute value, makes it easy to take the
derivative, which will come in handy when we
do Gradient Descent in Chapter 5.

+4.,. The Sigma

symbol, Z, tells
ustodoa

summation.
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The Sum of the Squared Residuals:

Main Ideas Part 2
So far, we've looked at the SSR only in terms
of a simple straight line model, but we can

calculate it for all kinds of mo?

Here’s an example of the
«.... Residuals for altitude vs. time
“**++ for SpaceX’s SN rocket...

o

Altitude s

...and here’s an example of the Residuals for
a sinusoidal model of rainfall. Some months
are more rainy than others, and the pattern is
cyclical over time. If you can calculate the
Residuals, you can square them and add

%  themup!

Oops!

Time

::;T: VIVhen e c?LcuIatft:thel ...Instead of the shortest distance,
H Hals; W Lise e vertca the perpendicular distance...
distance to the model..: . }

b q ...because, in

b this example,

perpendicular

lines result in
...+~ different Weights
i1 " forthe Observed

P and Predicted

YY Heights.
" Weight - '

In contrast, the vertical distance allows both
the Observed and Predicted Heights to
correspond to the same Weight.

Now that we understand the main
ideas of the SSR, let’s walk through
an example of how it’s calculated,
step-by-step.
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SSR: Step- Step In this example, we have 3
Observations, so n = 3, and we

? expand the summation into 3 terms.
n

The Sum of Squared |
= ) (Observed; - Predicted;)?
Residuals (SSR) ( - Predicted)

i=1 - Observed = .-
Predicted = +-.
Residual = l
| ] 1 = .
The residual fori =1, y
the term for the first
Observation is... (Q
_ (1.9-1.72 | €.
Once we expand the summation, «
we plug in the Residuals for
each Observation. .« et :
5
= - i 2
SSR = (Observeds - Predicted) Forl=2. the term
for the second
Observation, the
i 5 residual is...
+ (Observed: - Predictedz) (1.6 - 2,00
Y., 4

..
......
.................

+ (Observeds - Predicteds)?
"'.. Fori =38, the term

Now, we just do the math, for the third
and the final Sum of Squared Observation...

Residuals (SSR) is 0.69.

*"Don’t get me wrong, the SSR

is awesome, but it has a pretty

;s big problem that we’ll talk e
“ne,_about on the next page.
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Mean Squared Error (MSE): Main Ideas

although awesome, is not super easy to interpret because

@ The Problem: Sum of the Squared Residuals (SSR),

it depends, in part, on how much data you have.

A

For example, if we start with a simple dataset with
3 points, the Residuals are, from left to right,

. +1,-3,and 2, and the SSR = 14.
2 ?x" \b

Now, if we have a second dataset that
includes 2 more data points added to
the first one, and the Residuals are -2
and 2, then the SSR increases to 22.
Y

Y However, the
",

increase in the SSR
‘AQ from 14 to 22 does
% V7" not suggest that the
b second model, fit to
" : 6 the second, larger
‘ dataset, is worse
than the first. It only
14 tells us that the
£ model with more
data has more
] L . Residuals.

to different-sized datasets is to calculate the Mean Squared

@A Solution: One way to compare the two models that may be fit

. Error (MSE), which is simply the average of the SSR.

»
&

1
Mean Squared Error _
(MSE)

The Sum of Squared
Residuals (SSR)

Number of
Observations, n

n
Z(Observedi - Predicted;)?
i=1

n
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Mean Squared Error (MSE): Step-by-Step

Now let’s see the MSE in
action by calculating it for
the two datasets!!!

n

SSR Z (Observed; - Predicted;)?

Mean Squared Error (MSE) = = =
n n

i=1

The second dataset has 5 points and the
SSR increases to 22. In contrast, the

The first dataset has only 3 points
and the SSR = 14, so the Mean
MSE, 22/5 = 4.4, is now slightly lower.

Squared Error (MSE) is 14/3.= 4.7.

S

= s

/,'/'é 0': "‘. "-
f < ¥ “a
= SSR 14 22 4
4.7 — T =4.4

g =

So, unlike the SSR, which increases when we add more data
to the model, the MSE can increase or decrease depending on
the average residual, which gives us a better sense of how the

model is performing overall.

Unfortunately, MSEs are
still difficult to interpret on

their own because the

maximum values depend on
the scale of the data.
For example, if the y-axis is in
millimeters and the Residuals are 1,
¢ =3,and 2, then the MSE = 4.7.

x
[
g2 o 0.02+
D o
1 0.014

However, if we change the y-axis to
meters, then the Residuals for the
exact same data shrink to 0.001,
-0.003, and 0.002, and the MSE is
now 0.0000047. It’s tiny!

Y The good news,
y g

however, is that both

the SSR and the MSE
can be used to
calculate something
called R2, which is

independent of both
the size of the dataset
and the scale, so keep
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) In this example, changing the units from
millimeters to meters reduced the MSE by a lot!!!

e
o rag,
+ Taa,
e,

R2: Main Ideas

The Problem: As we just
saw, the MSE, although
totally cool, can be difficult

to interpret because it

depends, in part, on the
scale of the data.

A
MSE = 4.7 MSE = 0.0000047

millimeters ? 6

meters| @ (5

A Solution: R2, pronounced R squared, is a

simple, easy-to-interpret metric that does not

depend on the size of the dataset or its scale.
>..and compare it to the SSE or MSE
around the model we're interested in.
In this case, that means we calculate
the SSR or MSE around the blue line
that uses Weight to predict Height.

A
Typically, R2 is calculated by comparing the
SSR or MSE around the mean y-axis value. In
this example, we calculate the SSR or MSE

around the average Height...
y ??
Height [ Height O 4
"Weight ! " Weight ! v

R2 then gives us a percentage of how much the
predictions improved by using the model we're
interested in instead of just the mean.

What's a
Pirate’s favorite
statistic?

In this example, R2 would tell us how much better our
predictions are when we use the blue line, which uses
Weight to predict Height, instead of predicting that everyone
has the average Height.

R2 values go from 0 to 1 and are interpreted as
percentages, and the closer the value is to 1, the better
the model fits the data relative to the mean y-axis value.

Avrrrrrrrr-squared!!!

Now that we understand the main
ideas, let’s dive into the details!!!
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R?2: Details Part 1

First, we calculate the Sum of the Squared

Residuals for the mean. We'll call this SSR

the SSR(mean). In this example, the mean
Height is 1.9 and the SSR(mean) = 1.6.

SSR(mean) = (2.3 - 1.9)2
+(1.2-192 +(27-1.98
+(14-192+(@2-1.92

o
o

o
+

| fo..
lﬁ‘%‘ ©)

“Weight '

Height

o |

Then, we calculate the SSR for the fitted

line, SSR(fitted line), and get 0.5.
13

i NOTE: The smaller
k Residuals around the
fitted line, and thus
the smaller SSR given

. the same dataset,
% suggest the fitted line
. does a better job
* making predictions
than the mean.

Now we can calculate the
R2 value using a surprisingly
simple formula...

= T :
Weight v

SSR(fitted line) = (1.2 - 1.1)2 + (2.2 - 1.8)2 + (1.4 - 1.9)2

: po- SSR(mean) - SSR(fitted line)

+(27-2424+(23-25p

SSR(mean)
_16-05
= ...and the result, 0.7, tells us
1.6 that there was a 70%
'_07 reduction in the size of the

...+~ Residuals between the
Wrssntze " mean and the fitted line.

A

When SSR(mean) = SSR(fitted line),
then both models’ predictions are
equally good (or equally bad), and R2 = 0

SSR(mean) - SSRifitted line) <}
SSR(mean) ]
0
= m— =0 e
SSR(mean)

64

In general, because the
numerator for R2...

@

SSR(mean) - SSR(fitted line)

...is the amount by which the SSRs
shrank when we fitted the line, R2
values tell us the percentage the

Residuals around the mean shrank

when we used the fitted line.

When SSR(fitted line) = 0,
meaning that the fitted line fits
the data perfectly, then R2 =1.

*
. .
....... . .
ey

SSR(mean) -0 _ SSR(mean)f
SSR(mean)  SSR(mean)




R?2: Details Part 2

®

B2 - SSR(mean)_— SSR(fitted line)
SSR(mean)
NOTE: Any 2 random e :
data points have R2 = 1... A o e,
g w, regardless of e, e
&y S the Residuals Y <
o 0 <", around the
‘g’ ® means...
(0]
]
...the Residuals LT e
SSR(mean) - 0 3 around a fitted line ****++.,
SSR(mean) tegy will always be 0... N, 4
Y
SSR(mean) ...and when we do
= s = 1<+-"~the math, we are just
SR(mean) dividing SSR(mean)
by SSR(mean),
which is 1.
And because a small amount of random data can have a high (close to 1) R2,
any time we see a trend in a small dataset, it’s difficult to have confidence that
a high R2 value is not due to random chance.
If we had a lot of data organized
randomly using arandom ID  ...and have a relatively small ...would be similar to
Number, we would expect the  (close to 0) R2 because the the residuals around
graph to look like this... Residuals around the mean... the fitted line
(6} i £
®o o0 E
AL
Height| @ ° Height vs.
(@) [ ]
ID Number ID Number
In contrast, when we see
atrend in a large amount
of data like this...

ID Number
..we can, intuitively, have more confidence that a large
R2 s not due to random chance because the data are

not scattered around randomly like we might expect.

Weight

Never satisfied with intuition, statisticians developed something called p-values
to quantify how much confidence we should have in R2 values and pretty much
any other method that summarizes data. We’ll talk about p-values in a bit, but
first let’s calculate R2? using the Mean Squared Error (MSE).
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Calculating R2 with the Mean Squared

Error (MSE): Details

So far, we've calculated R? using the Sum of the Squared
Residuals (SSR), but we can just as easily calculate it
using the Mean Squared Error (MSE). »

First, we rewrite the MSE in
terms of the SSR divided by the

™

MSE(mean) - MSE(fitted line) w..

LN
",

MSE(mean) s+ size of the dataset, n...
e (J
SSR(mean)  SSR(fitted line)
= ...then we
- L 0 consolidate all of
B SSR(mean) the division by n

,.,into a single term...

1
SSR(mean) - SSR(fitted line) p
n

...and since
SSR(mean) v.n divided by
""',v. nis1...
SSR(mean) - SSR(fitted line) 1"
= X
SSR(mean)

2 ...we end up with R2 times 1, which is just R2. So, we
can calculate R2 with the SSR or MSE, whichever is
readily available. Either way, we'll get the same value.

Gentle Reminders: BAMI!

Residual = Observed - Predicted

Now that we can calculate
R2 two different ways, let’s
answer its most frequently
asked questions on the
next page!

SSR = Sum of Squared Residuals ‘

n
SSR =Z(Observedi - Predicted;)?
i=1

Mean Squared Error (MSE) = SS—R
n

...where n is the sample size

. SSR(mean) - SSR(fitted line)
- SSR(mean)
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Does R2 always compare the mean to a straight fitted line?
The most common way to calculate R2 is to compare the mean to a

fitted line. However, we can calculate it for anything we can calculate
the Sum of the Squared Residuals for. For example, for rainfall data,
we use R2 to compare a square wave to a sine wave.

0
+
+
+
-

Q »
Rainfall

In this case, we calculate R2

Time ..-" .
S g ¥
- in
based on the Sum of the «, R2= SSR(square) - SSR(sine)
Squared Residuals around SSR(square)
the square and sine waves.

.--"‘Y
Can R2? be negative?

When we're only comparing the
mean to a fitted line, R2 is positive, ...we get a negative R? value, -1.4,
but when we compare other types of and it tells us the Residuals
models, anything can happen. increased by 140%.

0

For example, if we use R2 to compare
a straight line to a parabola...

(Y
.

_SSR(line) - SSR(parabola) -
B SSRline)

.
.
.
.
>
o

RSS(straight line) = 5

RSS(parabola) = 12

Is R2 related to Pearson’s correlation coefficient?

Yes! If you can calculate Pearson’s correlation
coefficient, p (the Greek character rho) or r, for a
relationship between two things, then the square
of that coefficient is equal to R2. In other words...

Now let’s talk
about p-values!!!

p2=r2=R?

...and now we can see where R2 got its name.



The Problem: We need to

®

1 NOTE: Throughout the
description of p-values, we’ll
only focus on determining
whether or not Drug A is
different from Drug B. If a p-
value allows us to establish a |
difference, then we can worry

Drug A Drug B

be in the results of our analysis.

drugs, A and B, and we wanted to
know if they were different.

p-values: Main ldeas Part 1
A Solution: p-values give us a
quantify how confident we should measure of confidence in the
results from a statistical analysis.
.. Imagine we had two antiviral (/

...and we gave Drug B to

another person and they

So we gave Drug A to
were not cured.

1 person and they
were cured..:

.
o

LL LT

: i
4 L™

Drug B
@

or worse than Drug B.

about whether Drug A is better

Can we conclude that Drug A is different from Drug B? (
Nol!l Drug B may have failed for a lot of reasons. Maybe this person is taking a

medication that has a bad interaction with Drug B, or maybe they have a rare allergy to
Drug B, or maybe they didn’t take Drug B properly and missed a dose.
Or maybe Drug A doesn’t actually work, and the placebo effect deserves all of the credit.

There are a lot of weird, random things that can happen when doing a test, and this
means that we need to test each drug on more than just one person.

©,

So, we redid the experiment with lots and lots of

people, and these were the results: Drug A cured a

lot of people compared to Drug B, which hardly
cured anyone.

Drug B

Drug A 1

@ - [ D)
Cured!! Not Cured Cured!! Not Cured
3 2 1,432

1,043
Now, it’s pretty obvious that Drug A is different from Drug B because it would be unrealistic
to suppose that these results were due to just random chance and that there’s no real

difference between Drug A and Drug B.

It’s possible that some of the people taking Drug A were actually cured by placebo, and
some of the people taking Drug B were not cured because they had a rare allergy, but there

are just too many people cured by Drug A, and too few cured by Drug B, for us to seriously
think that these results are just random and that Drug A is no different from Drug B.
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p-values: Main Ideas Part 2

In contrast, let’s say that these were the results...
Drug A Drug B

e "
Cured!"!  Not Cured Cured!!! Not Cured
73 125 59 131

...and 37% of the people who took Drug A were cured compared to 31%
who took Drug B.

Drug A cured a larger percentage of people, but given that no study is
perfect and there are always a few random things that happen, how
confident can we be that Drug A is different from Drug B?

This is where p-values come in. p-values are numbers between 0 and 1
that, in this example, quantify how confident we should be that Drug A is
different from Drug B. The closer a p-value is to 0, the more confidence we
have that Drug A and Drug B are different.

So, the question is, “how small does a p-value have to be before we're
sufficiently confident that Drug A is different from Drug B?”

In other words, what threshold can we use to make a good decision about
whether these drugs are different?

: means that if there’s no difference between Drug awkward. So, let’s go
i AandDrug B, and if we did this exact same = «::j... through an example and
experiment a bunch of times, then only 5% of work this out, one step
those experiments would result in the wrong : atatime.
decision. :

@  In practice, a commonly used threshold is 0.05. 1t yes! This wording is
i

Imagine we gave the same drug,
Drug A, to two different groups.

O

PO
Drug A “Drug A When we calculate the p-value

.:) vs. .:) for these data using a

Statistical Test (for example,
Now, all of the differences in the results can definitely be Fisher’s Exact Test, but we’'ll

attributed to weird, random things, like a rare allergy in save those details for another
one person or a strong placebo effect in another. day) we get 0.9, which is larger

Drug A Drug A than 0.05. Thus, we would say
B‘. that we fail to see a difference
4 between these two groups. And
Cured!!  Not Cured [ Ao ]  hat makes sense because both
groups are taking Drug A and
73 125 71 127 the only differences are weird,
random things like rare
allergies.
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p-values: Main Ideas Part 3
Drug A

Drug A

@ If we repeated this
same experiment over

and over again, most of
the time we would get JENTPURRTTLLLL »
similarly large p- szzz2r
values...
ey

etc. etc. etc.
etc. etc. etc.

etc. etc.

Cured!!! Not Cured Cured!!  Not Cured
127

129

71

However, every once in a while, by random
e chance, all of the people with rare allergiewand by random chance, all of
might end up in the group on the left.. the people with strong (positive)
3 placebo reactions might end up

Drug A Drug A
. < in the group on the right...
Cured!! | Not Cured Cured!!! Not Cured IS I8
138 114 ...and, as a result, the p-value
= 5 for this specific run of the
Ao Hirod 42 55 Oteed experiment is 0.01 (calculated

using Fisher’s Exact Test, but
we'll save those details for
another day), since the results

Thus, because the p-value is < 0.05 (the
are pretty different.

threshold we’re using for making a decision), we
would say that the two groups are different, even
though they both took the same drug!

TERMINOLOGY ALERT!!

Getting a small p-value when there is no
difference is called a False Positive.

A 0.05 threshold for p-values means that 5% of the experiments, where the only
differences come from weird, random things, will generate a p-value smaller than 0.05.

In other words, if there’s no difference between Drug A and Drug B, in 5% of the times we
do the experiment, we’ll get a p-value less than 0.05, and that would be a False Positive.



p-values: Main Ideas Part 4

If it's extremely important that we're correct when we
say the drugs are different, then we can use a smaller
threshold, like 0.01 or 0.001 or even smaller.
Using a threshold of 0.001 would get a False
Positive only once in every 1,000 experiments.
Likewise, if it’s not that important (for example, if
we're trying to decide if the ice-cream truck will arrive

on time), then we can use a larger threshold, like 0.2.

Using a threshold of 0.2 means we’re willing to get a
False Positive 2 times out of 10.

That said, the most common threshold is 0.05
because trying to reduce the number of False
Positives below 5% often costs more than it’s worth.

Now, going back to the original experiment,
where we compared Drug A to Drug B...

e
o

Drug A ot Drug B
) & A [ )
Cured!"!  Not Cured Cured!"! | Not Cured
73 125 59 131

...if we calculate a p-value for this experiment and the
p-value < 0.05, then we'll decide that Drug A is different
from Drug B.

That said, the p-value = 0.24, (again calculated using
Fisher’s Exact Test), so we're not confident that Drug A
is different from Drug B.

TERMINOLOGY ALERT!!

In fancy statistical lingo, the idea of trying #m:
to determine if these drugs are the same |}

or not is called Hypothesis Testing.

The Null Hypothesis is that the drugs are §=
the same, and the p-value helps us

decide if we should reject the Null
Hypothesis.

e



p-values: Main Ideas Part 5

While a small p-value helps us decide if Drug A is different
from Drug B, it does not tell us how different they are.

In other words, you can have a small p-value regardless of
the size of the difference between Drug A and Drug B.

The difference can be tiny or huge.
For example, this experiment gives us a relatively large
p-value, 0.24, even though there’s a 6-point difference
between Drug A and Drug B.

O
o e
K

Drug A Drug B
In contrast, this experiment
involving a lot more people
Cured!!! Not Cured Cured!!! Not Cured gives us a smaller p-value,
195 131 0.04, even though there’s
only a 1-point difference
37% Cured 31% Cured between Drug A and Drug B.
Drug A Drug B

|2
Cured!!! Not Cured Cured!!! Not Cured
5,005 9,868 4,800 9,000
34% Cured 35% Cured

In summary, a small p-value does not imply
that the effect size, or difference between

Drug A and Drug B, is large.

DOUBLE
BAM!!!

Now that we understand
the main ideas of p-values,
let’s summarize the main
ideas of this chapter.
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The Fundamental Concepts of Statistics:

We can see trends in data with histograms.
We'll learn how to use histograms to make
classifications with Naive Bayes in Chapter 7.

@ However, histograms have

Q limitations (they need a lot of data

00 g g N and can have gaps), so we also use
00000 ,5 ® ..+ probability distributions to
0000000000 " represent trends. We’'ll learn how to
OIOICIOIIOIOIOIIOIO & use probability distributions to

make classifications with Naive
Bayes in Chapter 7.

forever and be way too expensive, we use models to approximate reality.
Histograms and probability distributions are examples of models that we can
use to make predictions. We can also use a mathematical formula, like the
pquation for the blue line, as a model that makes predictions.

@ Rather than collect all of the data in the whole wide world, which would take

.

Throughout this book, we’ll
create machine learning
models to make predictions.

Weight

We can evaluate how well a
model reflects the data using the
Sum of the Squared Residuals
(SSR), the Mean Squared Error

(MSE), and R2. We’ll use these
metrics throughout the book.

Lastly, we use p-values to
give us a sense of how
much confidence we should

put in the predictions that
our models make. We'll use
p-values in Chapter 4 when

we do Linear Regression.

. Residual = Observed - Predicted

n
SSR = Z(Observed.— - Predicted))?

SSR = Sum of Squared Residuals

i=1

Mean Squared Error (MSE) = ﬂ
n

...where n is the sample size

- SSR(mean) - SSR(fitted line)
- SSR(mean)
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Linear Regression: Main Ideas
The Problem: We’ve collected
and in Chapter 3, we learned that

@ Weight and Height measurements
we could fit a line to the data and

from 5 people, and we want to use
Weight to predict Height, which is
continuous. . use it to make predictions.

i
‘l
=
o

However, 1) we
didn’t talk about
how we fit a line

20

N

Height

o ...,

.

4

O
(@

A (@]
@] p
)

Height

" Weight *

b to the data and 2)
we didn’t calculate a
p-value for the fitted

line, which would
quantify how much
confidence we should
have in its predictions
compared to just

XWeight' .
using the mean y-axis
value.

A Solution: Linear Regression fits a line
@ to the data that minimizes the Sum M..and once we ﬂ-t the line to thze
Squared Residuals (SSR)... data!, we can easily calculate R:
: ,.++= Which gives us a sense of how
L.+ accurate our predictions will be...

*

vl 1 Q4 d)
Height 6 R2= 066
J p-value = 0.1
" Weight " ’

NOTE: Linear Regression is the gateway

to a general technique called Linear

Models, which can be used to create and

evaluate models that go way beyond
fitting simple straight lines to datal!!

...and Linear Regression provides us
with a p-value for the R2 value, so we
- can get a sense of how confident we
should be that the predictions made
with the fitted line are better than
predictions made with the mean of the
y-axis coordinates for the data.
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Fitting a Line to Data: Main Ideas

Imagine we had
Height and Weight
< dataona graph...\

...and we
< . wanted to
- predict
Height % Height from
: Weight.

Weight <, ..+*"

We can quantify how bad these
predictions are by calculating the
Residuals, which are the

differences between the Observed
“and Predicted heights...

...and using the

_F oy Residuals to
Q calculate the
Height ol Sum of the
Squared -
Residuals

(SSR).

L
4o

Weight

.
“.
+

Then we can plot the SSR on
this graph that has the SSR on
the y-axis, and different lines fit

to the data on the x-axis.

SSR=

iF (:)

This horizontal line, which

Because the heavier Weights are

@ paired with taller Heights, this line
makes terrible predictions. :

.
.
.
.

o ;
e ©
H . ht & “-."
eig o [ ) ‘4
Weight

As we can see on the graph, different

@ values for a line’s y-axis intercept and
slope, shown on the x-axis, change the

SSR, shown on the y-axis. Linear
Regression selects the line, the y-axis
intercept and slope, that results in the
minimum SSR. ’

BAM!!!

" has a different y-axis
+ intercept and slope, gives
¢ us slightly smaller residuals
i and asmaller SSR...

...and this line has

even 5
smaller residuals and a ---and this line has larger
residuals and a larger SSR.

: smaller SSR..

Weight

7



Fitting a Line to Data: Intuition

If we don’t change the slope,
we can see how the SSR
changes for different y-axis

intercept values...

*..and, in this case, the goal of Linear
Regression would be to find the y-axis
intercept that results in the lowest SSR at the

g

+  bottom of this curve.

Height 3 .'.

! Height
SSR ;
Weight H
‘:’ Weight
¥ L L] L]
Height y-axis intercept
Weight Height Feight
Weight Weight

One way to find the lowest point in the curve
is to calculate the derivative of the curve
(NOTE: If you’re not familiar with
derivatives, see Appendix D) and

solve for where the derivative is equal
LT ..= 10 0, at the bottom of the curve.

Solving this equation results in an Analytical
Solution, meaning, we end up with a formula that we
can plug our data into, and the output is the optimal

value. Analytical solutions are awesome when you
can find them (like for Linear Regression), but
they’re rare and only work in very specific situations.

Another way to find an optimal slope and y-axis intercept is to use an Iterative
Method called Gradient Descent. In contrast to an Analytical Solution, an Iterative

Method starts with a guess for the value and then goes into a loop that improves the
guess one small step at a time. Although Gradient Descent takes longer than an
analytical solution, it’s one of the most important tools in machine learning because it
can be used in a wide variety of situations where there are no analytical solutions,

including Logistic Regression, Neural Networks, and many more.

Because Gradient Descent is so I'm so>
important, we’ll spend all of excited!l! :
Chapter 5 on it. GET EXCITED!!!

SSR

L] L]
y-axis intercept
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p-values for Linear Regression and R2:
Main Ideas ' . Gentle Reminder:

Now, assuming that we've fit a line to the f R2= SeHimean) - SoRiited line) |
data that minimizes the SSR using an

SSR(mean)
analytical solution or Gradient Descent,

: we calculate R with ...and the SSR for P
: the SSR for the the mean height... ...and plugthem ¢
: fitted line... X

z M, into the equation ’::’
: & .»' B forR?and get
._ s i T 3 0.66. A
Height| _ . b v 4 Height o
SSRifitted line) = 0.55 SSR(mean) = 1.61 y
1.61 - 0.55
Weight Weight Re=—=22g—=0.60

useful, but now we need to calculate the p-value to make sure that this
result isn’t due to random chance.
In this context, a p-value tells us the probability that random data could
result in a similar R2 value or a better one. In other words, the p-value will tell
us the probability that random data could result in an R2 = 0.66.

@ The R2 value, 0.66, suggests that using Weight to predict Height will be

Because the original dataset e linean
has 5 pairs of measurements, R . i ...and then create
one way* to calculate a p- eg'l'ﬁ;st'gr:;: it >10,0f00 more
value is to pair 5 random sets of random
values for Height with 5 | "ndomdataand | data and add their
random values for Weight and P dd that B2 t R2 values to the
plot them on a graph... i, clel A & histogram and use
3 : ", ahistogram... the histogram to
Jr L) : T 4 calculate the
B : R2=0.03 probability that
Random| 4@ 3 Random random data will

Height 1) < Height
0®

Random Weight Random Weight

(©) ?éé give us an R? >

.

* NOTE: Because Linear Regression was
invented before computers could quickly generate ;
random data, this is not the traditional way to ¢ ﬁ;;g?;s(;;?;“ !

calculate p-values, but it works!!!

In the end, we get p-value = 0.1, meaning there’s a 10%
chance that random data could give us an R2 = 0.66.
That's a relatively high p-value, so we might not have a lot

of confidence in the predictions, which makes sense
because we didn’t have much data to begin with.

small bam.
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Multiple Linear Regression: Main Ideas

So far, the example we’ve used ...and, as we've seen, Simple Linear
demonstrates something called Simple Regression fits a line to the data that
Linear Regression because we use one we can use to make predictions.

variable, Weight, to predict Height...

.
____ %

4 "
Height = 1.1 + 0.5 x Weight

Weight

However, it’s just as easy to use 2
or more variables, like Weight and
This is called Multiple Linear

Regression, and in this
. . A example, we end up with a 3-
Height = 1.1 + 0.5 x Weight + 0.3 x Shoe Size dimensional graph of the

data, which has 3 axes...

_____ ...and instead of a

fitting a line to the
data, we fit a plane.

.......
A e,
Yo

s

.

s
s
s

A Weight ...and one for Shoe Size...
...one for Weight... \/
Just like for Simple Linear Regression, NOTE: When we use 3 or
Multiple Linear Regression calculates R2 mars vaighlestaimakea
prediction, we can’t draw

and p-values from the Sum of the Squared th h. but il
Residuals (SSR). And the Residuals are © grapn, but we can st
) ) do the math to calculate
still the difference between the Observed :
Height and the Predicted Height the Residuals for R2 and
19 . Ight, its p-value.

The only difference is that now we calculate

Residuals around the fitted plane instead of a line. Bam.

A
R? _SSR(mean) - SSR(fitted plane)
SSR(mean)
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Beyond Linear Regression

As mentioned at the start of this
chapter, Linear Regression is the

gateway to something called

@ Linear Models allow us to use discrete
Linear Models, which are
incredibly flexible and powerful.

data, like whether or not someone loves

the movie Troll 2, to predict something
continuous, like how many grams of
@ Just like when we used Weight to predict
t

Height, Linear Models will give us an R2 for

Popcorn they eat each day.
his prediction, which gives us a sense of how 5 O R2 = 0.66
accurate the predictions will be, and a p-value 4 b
that lets us know how much confidence we *,  Popcom pevakia=0.04
should have in the predictions. @ O ',ﬂ' o)
In this case, the p-value of 0.04 is relatively small, which O
suggests that it would be unlikely for random data to
give us the same result or something more extreme. In
other words, we can be confident that knowing whether
or not someone loves Troll 2 will improve our prediction
of how much Popcorn they will eat.

L
Loves
@Linear Models also easily combine

Does Not l
Troll 2 Love Troll 2
discrete data, like whether or not
someone loves Troll 2, with
continuous data, like how much
Soda Pop they drink, to predict
something continuous, like how

In this case, adding how much Soda
Pop someone drinks to the model
dramatically increased the R2value,
which means the predictions will be
much Popcorn they will eat.

more accurate, and reduced the p-
value, suggesting we can have more
R2=0.97
Popcorn
(@)

confidence in the predictions.

‘;
p-value = 0.006
O
O

DOUBLE
BAM!!!
O

O o TS5 N BV Tl 2 @ If you'd like to learn more

about Linear Models,

scan, click, or tap this QR
code to check out the

‘Quests on YouTube!!!
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bam.

Now let’s talk about
how to fit a line to data
using Gradient

Descent!!!



Chapter 05

Gradient
Descent!!!




Gradient Descent: Main Ideas

The Problem: A major part of machine

@ learning is optimizing a model’s fit to the data.
Sometimes this can be done with an analytical
solution, but it’s not always possible.

For example, there is no analytical
solution for Logistic Regression .»*
(Chapter 6), which fits an s-shaped

squiggle to data. * J s .

Likewise, there is no analytical solution for Neural
" Networks (Chapter 12), which fit fancy sqwggles to data.

%« ]

L ] | L ]
A Solution: When there’s no Gradient Descent is an iterative solution that
analytical solution, Gradlent incrementally steps toward an optimal solution
Descent can save the day! and is used in a very wide variety of situations.
Gradient Descent ..and then improves ...until it finds an optimal
starts with an the guess, one step solution or reaches a
initial guess at atime.. maximum number of steps
2 : .
g O

_% Height{ b
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Gradient Descent: Details Part 1

Let’s show how Gradient Descent
fits a line to these Height and
Weight measurements.
NOTE: Even though there’s an analytical
7 :-' ':‘ solution for Linear Regression, we’re
s using it to demonstrate how Gradient
- .:' O Descent works because we can
K compare the output from Gradient
Height = 3 0] ' Descent to the knqwn optimal va!ues
Specifically, we’ll show how Gradient
Weight ’ Descent estimates the intercept and the
slope of this line so that we minimize the
Sum of the Squared Residuals (SSR).

Weilght

Once we understand how
Gradient Descent optimizes
the intercept, we’ll show how
it optimizes the intercept and

...and show how
the slope at the same time.

To keep things simple
Gradient Descent
optimizes the intercept
one step at a time.

@ at the start, let’s plug in
the analytical solution
for the slope, 0.64...

| 4
Height = intercept + 0.64 x Weight
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Gradient Descent: Details Part 2

In this example, we're fitting a line to data, and

we can evaluate how well that line fits with the
Sum of the Squared Residuals (SSR).

¥
0

o

.

difference between the Observed

Remember, Residuals are the

o
o

and Predicted values.
S .
Residual = (Observed Height - Predicted Height)
. WL (. ; A
The Observed Heights are the j
values we originally measured. =

..and the Predicted Heights come
from the equation for the line...
LA

> 3
.- Predicted Height = interce,

pt + 0.64 x
V.

.
e

Weight
A

o,
ot

...s0 we can plug the equation for

the line in for the Predicted value.

g
A

Residual = (Observed Height - Predicted Height)

.
H

v ‘
= (Observed Height - (intercept + 0.64 x Weight))

@ Now, because we have 3 data

points, and thus, 3 Residuals,
the SSR has 3 terms. ot

.
o
o

A&

SSR = (Observed Height - (intercept + 0.64 x Weight1))2

»
0

[

+ (Observed Height: - (intercept + 0.64 x Weighto))?

+ (Observed Heights - (intercept + 0.64 x Weights))

I‘-
o &



Gradient Descent: Details Part 3

In this first example, Now, to calculate the SSR, we
since we'’re only first plug the value for the y-axis

optimizing the y-axis

4 intercept, 0, into the equation
intercept, we'll start by & we derived in Steps 4 and 5...
assigning it a random s
value. In this case, we’ll triaannnne
initialize the intercept :V
by setting it to 0. —"gqp _ (Observed Height; - (intercept + 0.64 x Weight;)2
b + (Observed Height: - (intercept + 0.64 x Weighty))2
A/
i o | i 2
Height = 0 + 0.64 x Weight + (Observed Heights (|nte.arcept +0.84 x Weights))
: 4
_,." SSR = (Observed Height1 - (0 + 0.64 x Weight1))?
? + (Observed Heightz - (0 + 0.64 x Weight2)?
,' o o + (Observed Heights - (0 + 0.64 x Weighta))?
’o.i p S
...then we plug in the
Observed values for
Height and Weight for

each data point.

SSR = (Observed Heights - (0 + 0.84 x Weight))?
+ (Observed Height - (0 + 0.64 x Weighto))?

+ (Observed Heights - (0 + 0.64 x Weights))2 ]

v e
SSR = (1.4 - (0 + 0.84 x 0.5))2 ? 5
+(1.9-(0 + 0.64 x 2.3))2 ’
+(3.2-(0+0.64x29) i
Lastly, we just do the y 74
(9) mmssnioi sneriesoenafZi
settoOis 3.1..!3am! i 4

ray o
.......
...................
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Gradient Descent: Details Part 4

Now, because the goal is to minimize the SSR, it’s a type of Loss or Cost Function
@ (see Terminology Alert below). In Gradient Descent, we minimize the Loss or
Cost Function by taking steps away from the initial guess toward the optimal
value. In this case, we see that as we increase the intercept, the x-axis of the
central graph, we decrease the SSR, the y-axis.

]
intercept

TERMINOLOGY ALERT!M!

The terms Loss Function and Cost Function refer to anything we want to optimize when we fit |
a model to data. For example, we might want to optimize the SSR or the Mean Squared Error
(MSE) when we fit a straight line with Regression or a squiggly line (in Neural Networks). That

said, some people use the term Loss Function to specifically refer to a function (like the SSR) !
applied to only one data point, and use the term Cost Function to specifically refer to a function
(like the SSR) applied to all of the data. Unfortunately, these specific meanings are not universal,
' so be aware of the context and be prepared to be flexible. In this book, we’ll use them together

and interchangeably, as in “The Loss or Cost Function is the SSR.”

Now, instead of just randomly trying a
bunch of values for the y-axis intercept
and plotting the resulting SSR on a graph,
we can plot the SSR as a function of the y-

axis intercept. In other words, this

equation for the SSR...

) ...corresponds to this curve
on a graph that has the SSR

i onthe y-axis and

= theintercept on
the x-axis.>,

\4
SSR = (1.4 - (intercept + 0.64 x 0.5))2

A + (1.9 - (intercept + 0.64 x 2.3))2 SSR

oy (8.2 - (intercept + 0.64 x 2.9))
A

o
” D)
o +
o *
* ey
"

0

Psst! Remember: ...and these are the

these are the : ‘
Ob d Weights.
Observed Heights... e e

o+
Yaant
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Gradient Descent: Details Part 5

intercept = 0, we got this SSR...

Now, when we started with the y-asto how do we take steps
toward this y-axis intercept that
: .+ gives us the lowest SSR...

SSR

y
...and how do we know
when to stop or if we've

gone too far?

The answers to those questions
come from the derivative of the
curve, which tells us the slope of
any tange.nt line that touches it.
-

.
[T
0

.

.
v
.
.

]
»
.
.

.

.

. .
» )
.

L]
intercept

A relatively large value for the
derivative, which corresponds to
a relatively steep slope for the
.- tangent line, suggests we're
w” relatively far from the bottom of
the curve, so we should take a

relatively large step...

Vi

SSR 7
N > :
NOTE: See § SSR
Appendix D ...and a negative
. . . to learn derivative, or slope,
intercept | more about tells us that we need
derivatives. to take a step to the
intercept ~"ight to get closer to
the lowest SSR.

A relatively small value for the

derivative suggests we're
relatively close to the bottom
of the curve, so we should

X :
v

B
., .
Ty il
LEETR T

take a relatively small step...w
...and a positive derivative tells us that

s
wuse

we need to take a step to the left to
get closer to the lowest SSR.

In summary, the derivative tells us in
: which direction to take a step and how
large that step should be, so let’s learn
how to take the derivative of the SSR!!!

e,
-

]
intercept

r B
s ot
EETTL A
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Gradient Descent: Details Part 6

Because a single term of the ezl =SSN f0 i th?
@ SSR consists of 2 Residual..- parentheses and derivative of the_SSFl is
squared... to use The Chain Rule
g s (see Appendix F if you
v need to refresh your

SSR = ( : Height - (intercept + 0.64 x Weight) : )2

Step 1: Create a link
between the intercept
and the SSR by
rewriting the SSR as
the function of the
Residual.

Step 2: Because the Residual
links the intercept to the SSR, d SSR d SSR

memory about how The
Chain Rule works).

SSR = (Residual)2  Residual = Height - (intercept + 0.64 x Weight)

d Residual

The Chain Rule tells us thatthe  d intercept d Residual = d intercept

derivative of the SSR with
respect to the intercept is..:*

l‘.
+
.
anst

Step 3: Use The Power

Because of the
..+ subtraction, we can
" remove the parentheses
" by multiplying everything
@ inside by -1.

d
= Height - (intercept + 0.64 x Weight)

= == Height - intercept - 0.64 x Weight
»

Rule (Appendix E) to
solve for the two .
derivatives. d Residual
d intercept d intercept
d
d intercept
=0-1-0=-1
d SSR d

= i o -
dioeknnl U Peakl T auel: = 2 cHes ki

Step 4: Plug dSSR_ dSSR d Residual

the derivatives = = = =
into The Chain d :tercept d Residual  d intercept

Rule to getthe .
final derivative <

of the SSR with . =2 x ( Height - (intercept + 0.64
respect to the
intercept.

Q
-
CP L) .
. R

Because the first and last terms
do not include the intercept,
their derivatives, with respect to
the intercept, are both 0.
However, the second term is the
negative intercept, so its
derivative is -1.

=2 x Residual x -1

X Weight) ) x -1
Multiply this -1
on the right by

= -2 x ( Height - (intercept + 0.64 x Weight) ) the 2 on the left

BAM!!!

",
o,
..........
...........



Gradient Descent: Details Part 7
So pens I U =) SSR = ( Height - (intercept + 0.64 x Weight) )2
= -2 x ( Height - (intercept + 0.64 x Weight) )

derivative of the SSR for a :;
single observation. d SSR
d intercept

.
.
*

However, we have three observations

@ in the dataset, so the SSR and its c.‘.',
derivative both have three terms. s
v g
SSR = ( Height - (intercept + 0.64 x Weight) )2

+ (Height - (intercept + 0.64 x Weight) )2

J O ? + (Height - (intercept + 0.64 x Weight) )
| ? ;
d SSR : : ;
. . Y dintercept — -2 x ( Height - (intercept + 0.64 x Weight) )
+ -2 x ( Height - (intercept + 0.64 x Weight) )
+ -2 x ( Height - (intercept + 0.64 x Weight) )

Gentle Reminder: Because we're using Linear Regression as our example, we don't
actually need to use Gradient Descent to find the optimal value for the intercept. Instead, we
could just set the derivative equal to 0 and solve for the intercept. This would be an
analytical solution. However, by applying Gradient Descent to this problem, we can compare

the optimal value that it gives us to the analytical solution and evaluate how well Gradient

Descent performs. This will give us more confidence in Gradient Descent when we use it in
situations without analytical solutions like Logistic Regression and Neural Networks.

h

-

Now that we have
the derivative of the i
SSR for all 3 data e
points, we can go through, Y 4
step-by-step, how Gradient ? &
Descent uses this derivative =
to find the intercept value
that minimizes the SSR.
However, before we get
started, it’s time for the

dreaded Terminology Alert!!!

wnnmy
.* "

.
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Terminology Alert!!! Parameters

OH NO!!! MORE
TERMINOLOGY!!!

optimize parameters. So, in this
B case, we would call the y-axis
intercept a parameter.

In the current example, In machine learning lingo, we
we’re trying to optimize call the things we want to
the y-axis intercept.

If we wanted to optimize both the y-axis
intercept and the slope, then we would
need to optimize two parameters. tiny bam.

. te
*
0

-

‘A
Predicted Height = intercept + slope x Weight

Now that we know what we
mean when we say parameter,
let’s see how Gradient Descent

optimizes a single parameter,

the intercept, one step at a
timell!
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Gradient Descent for One Parameter:

Step-by-Step

First, plug the Observed values into ..so that means plugging
the derivative of the Loss or Cost the Observed Weight and
Function. In this example, the SSR Height measurements into
is the Loss or Cost Function..: the derivative of the SSR.
- e oty e ——
‘u“. . ..1 ....... A
o o et ASSR_ oy ( Height - (intercept + 0.64 x Weight) )
dintercept’ ol i,
e | ! Treen o T, A
Hegit ‘ . + -2 x ( Height - (intercept + 0.64 x Weight) )
| e g

: g
----------------
...........

L] 1 )
Weight ¥ v
dSSR_ _ 5y (:32:- (intercept + 0.64 x:2.9):)
d intercept sk = 1
+-2x(:1.9:- (intercept + 0.64 x:2.3):)
+-2x (21.4 - (intercept + 0.64 x§0.5)§)
T :4 :' "amunn
Now we initialize the =
parameterwewantto | ..
optimize with a random | w
value. In this example, ‘
where we just want to s
optimize the y-axis = - L
intercept, we start by ‘® »» 92909000 .
ARGl o ; ASSR_ _ 5y (32-1(0:+064x29)
3 d intercept i
R 2 +-2x(1.9-:(0:+0.64x2.3))
v 3 +-2x(1.4-:(0i+0.64x0.5))
= intercept + 0.64 x Weight
’:.

Height = 0 + 0.64 x Weight

......
.........
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Gradient Descent for One Parameter:

Step-by-Step
Now evaluate the derivative at the
: When we do ..thus, when the
current value for the intercept. In : e
@ this case, the current value is 9 ) WL ] M:ept g. ot

get-5.7..c this tangent line is -5.7.
s L5 T N
GSSR_ __ox(32- (0 +064x29) A e
'.0 dlﬂtercept :..-........-E
N +-2x(1.9- (0 +0.64x2.3))5=-5,75
. +2x(14- 0 +064x08) i sen
4 —
y-axis intercept
Now calculate the Step Size NOTE: The Learning Rate
with the following equation: -, prevents us from taking
: steps that are too big and
- i : . skipping past the lowest
?’ﬁ:trlﬁagﬁir::ggirf. ‘ V . point in the curve.
Ihe darivative is \ 4 s Typically, for Gradient

proportional to how
big of a step we

which direction.

Take a step from the current
intercept to get closer to the
optimal value with the following

equation: - 2,

should take toward =-5.7x0.1
the minimum. The sesrenaranan 1 Yo
sign (+/-) tells us =-0.57 : 4

Descent, the Learning
Rate is determined
automatically: it starts
relatively large and gets
smaller with every step

=% taken. However, you can

also use Cross Validation
to determine a good value
for the Learning Rate. In

: this case, we're setting the
Learning Rate to 0.1.

New intercept = Current intercept - Step Size

Remember, in this ~_,..ee=""

.

tH veneady = 0-(-0.
case, the current I > (

intercept is 0. \ {057 i<

The new intercept,*

0.57, moves the line
up a little closer to
. thedata...

o
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...and it results
in a lower SSR.
Bam!

.
.
T

ay

SSR

y-axis intercept




Gradient Descent for One Parameter:

Step-by-Step

Now repeat the previous three steps, updating the intercept after
each iteration until the Step Size is close to 0 or we take the

maximum number of steps, which is often set to 1,000 iterations.

1 @ Evaluate the derivative at the

current value for the intercept...

d SSR

—_— =-2x(3.2- (057 +0.64x2.9))
d intercept

+2x(19- (057 +064x23))}
+-2x(14- (057 +0.64x05))

.....................

Calculate the Step Size... F

® ;
Step Size = Derivative x Learning Rate NOTE: The Step Size is smaller -
than before because the slope
=-23x0.1

" ofthe tangent line is not as
steep as before. The smaller

: i . slope means we’re getting

Hiaa closer to the optimal value.

..........

Calculate the new
mtercept value...

New intercept = Current intercept - Step Size

= 0.57 - (-0.23)

The new intercept, 0.8, y
moves the line up a little i,':l.:r'llgv:,terreggls Double Bam!
closer to the data... )

SSR

y-axis intercept
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Gradient Descent for One Parameter:

Step-by-Step

After 7 iterations of
Gradient Descent...
fo..

-
» .

¥ Loy

+

+ ‘e

y ey
Evaluate the derivative at Calculate the Calculate the
the current value... Step Size... new value...

'\/

h.and we made it to
...the Step Size was very close the lowest SSR.
to 0, so we stopped with the &
current intercept = 0.95....

emnn

SSR

.
.
Yaay

y-a-xis in'terce-pt

If, earlier on, instead of using Gradient
e Descent, we simply set the derivative to
0 and solved for the intercept, we would
have gotten 0.95, which is the same value
that Gradient Descent gave us. Thus,

Gradient Descent did a decent job.

BAM???

Not yet! Now let’s see how well
Gradient Descent optimizes the
intercept and the slope!
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Optimizing Two or More Parameters: Details

Now that we know how to optimize the
intercept of the line that minimizes the SSR,

let’s optimize both the intercept and the slope.

S
Yinns iy

— amamugy o
e .

; Y Y
Height = intercept + slope x Weight

v

Height = When we optimize
two parameters, we .......,
d get a 3-dimensional "-,.
graph of the SSR. :‘
L]
Weight
This axis «.,,
represents
different values
for the slope...
Just like before, the goal is to
find the parameter values that
give us the lowest SSR. And just : L
like before, Gradient Descent . the vertical axis @;;2;?;'5
initializes the parameters with is for the SSR... differant valtias

random values and then uses
derivatives to update those
parameters, one step at a time,
until they’re optimal.

for the intercept.

95 > o ﬂgt?&

So, now let’s learn how to take
derivatives of the SSR with respect
to both the intercept and the slope.

.
. .
. wast

v ¥
SSR = ( Height - (intercept + slope x Weight) )2
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Taking Multiple (Partial) Derivatives

of the SSR: Part 1

The good news is that taking the derivative

®

Step 1: Create a link
between the intercept
and the SSR by
rewriting the SSR as
the function of the
Residual.

SSR = (Residual)?

Step 2: Because the Residual

links the intercept to the SSR, d SSR d SSR

of the SSR with respect to the intercept is
exactly the same as before.

4
SSR = ( : Height - (intercept + slope x Weight) : )2

We can use The Chain
Rule to tell us how the
SSR changes with
respect to the intercept.

Residual = Observed Height

- (intercept + slope x Weight)

d Residual

The Chain Rule tells us that the  d intercept ~ d Residual
derivative of the SSR with

respect to the intercept is.z>=***""

»s"
.

Step 3: Use The Power
Rule to solve for the two

derivatives.
d Residual
dintercept ~ dintercept
-
d intercept
=0-1-0=-1
d SSR d

B ——— .
i Hleskhal - deskdia) T HanL 2 X Reaidicy

Step 4: Plug

the derivatives
into The Chain
Rule to get the
final derivative =
of the SSR with ",
respect to the
intercept.

e,
98

dSSR _ dSSR
dintercept ~ d Residual
Yy

d Residual
d intercept

.
0
X

.
.,
)

e,
-----
......
..........

=2 x ( Height - (intercept + slope x Weight) ) x -1

= -2 x ( Height - (intercept + slope x Weight) )

d intercept

Because of the
,-+Subtraction, we can
+*"remove the parentheses
by multiplying everything
inside by -1.

o
.
¥

v

Height - (intercept + slope x Weight)

Height - intercept - slope x Weight

s
.

A
Because the first and last terms
do not include the intercept,
their derivatives, with respect to
the intercept, are both 0.
However, the second term is the
negative intercept, so its
derivative is -1.

= 2 x Residual x -1

.........
o

Multiply this -1
on the right by
the 2 on the left



Taking Multiple (Partial) Derivatives

of the SSR: Part 2

The other good news is that taking the derivative
of the SSR with respect to the slope is very si‘riilal/’ We can use The Chain
+* to what we just did for the intercept. Rule to tell us how the
* SSR changes with

respect to the slope.
SSR = ( : Height - (intercept + slope x Weight) : )2 4 B

Step 1: Create a link
between the slope

and the SSA by SSR = (Residual  Residual = Observed Height
rewrifing the SSR s SR = (Residual) esidual = Observed Heig

the function of the - (intercept + slope x Weight)
Residual.

Step 2: Because the Residual

links the slope to the SSR, The dSSR__ dSSR_ | dResidual
Chain Rule tells us that the d slope d Residual d slope
derivative of the SSR with 1
respect to the slope is...****" Because of the
,+* subtraction, we can
Step 3: Use The Power .+ remove the parentheses
Rule to solve for the two _:’ by multiplying everything
derivatives. : inside by -1.
dResidual __d Y ,
dslope .~ dslope Height - (intercept + slope x Weight)
= _d Height - intercept - slope x Weight
d slope

b h'--...

AT LLLLLE T
.
+

e
3
.

=0-0-Weight = -Weight  ga;qse the first and second

terms do not include the slope,

dSSR_ _ d : 2 _ - their derivatives, with respect to

d Residual ~ d Residual [Resichrale = 2. Bakund the slope, are both 0. However,
the last term is the negative
slope times Weight, so its

derivative is -Weight.

Step 4: Plug :

the derivatives :TSR = : s§: : g gels’d“’a’ = 2 x Residual x -Weight

into The Chain wope esidua siope

Rule to get the Y ........... .

final derivative «* ¥k

of the SSR with ™, =2 x (Height - (intercept + slope x Weight) ) x -Weight  Multiply this

respect to the "3‘ -Weight on the

slope. right by the 2

= -2 x Weight x ( Height - (intercept + slope x Weight))  on the left to

DOUBLE BAMI o Weight
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Gradient Descent for Two Parameters:

Step-by-Step

Plug the Observed values into the y
derivatives of the Loss or Cost .
Function. In this example, the SSR is - V.
the Loss or Cost Function, so we’ll i
plug the Observed Weight and Height Height 4 ‘
measurements into the two derivatives

of the SSR, one with respect to the . o1
intercept... 7

Weight

Gentle Reminder: The  §
Weight and Height values ~§
that we're plugging into the § ™

derivatives come from the "-_
raw data in the graph. :
¥
dSSR  _

= -2 x ( Height; - (intercept + slope x Weight;) )
d intercept
+ -2 x ( Height: - (intercept + slope x Weight) )
+ -2 x ( Heights - (intercept + slope x Weights) )

1 2 %
....and one with ey
respect to the slope. ,d SSR_ _ -2 x (:3.2 :- (intercept + slope x:2.9):)
. d intercept P

+-2x (21.9 - (intercept + slope xg2.3)§)

d SSR _ o _
d slope ~ -2 x Weights x ( Height: - (intercept + slope x Weight:) )

+ -2 x Weight» x ( Height: - (intercept + slope x Weighty) )
+ -2 x Weights x ( Heights - (intercept + slope x Weights) )

v

s A
d SSR P , ..... :
L=ty - : 2 :- (intercept + slope xE2.9)§)
+-2x:2, 9 :- (intercept + slope x:2.3):)
+ -2 x 4 :-

(intercept + slope x§0.5)§ )



Gradient Descent for Two Parameters:

Step-by-Step

Now initialize the parameter, or parameters, that we
want to optimize with random values. In this example,
we’ll set the intercept to 0 and the slope to 0.5.
v e
Height = intercept + slope x Weight

-

yooae”
Height = 0 + 0.5 x Weight

..............

. s

. .,
. .

Height -
= ..*
ASSR_ _ 5, (3.2 - (intercept + slope x 2.9))
d intercept

+-2 x( 1.9 - (intercept + slope x 2.3))

+ -2 x (1.4 - (intercept + slope x 0.5) )

.

dSSR_ _ 5,(32-i(0:+:05x2.9))

d intercept Pofs
+-2x(1.9-:(0:+:0.5ix23))
+-2x(14-1(0i+:05:x0.5))

9
d SSR :
Tabpe -2x2.9x(3.2 - (intercept + slope x2.9))

+-2x2.3 x(1.9 - (intercept + slope x 2.3))
+-2x0.5x (1.4 - (intercept + slope x 0.5))

4 K
dSSR _ g---mE E-x---é
d slope =-2x2.9x(3.2-:(0:+10.5:x2.9))

+-2x23x(1.9-1(0:+105ix2.3))
+-2x05x(1.4-:(0:+:05:x05))
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Gradient Descent for Two Parameters:

Step-by-Step

Evaluate the derivatives at the
current values for the intercept, 0,

and slope, 0.5. .

L..' '.'. - » Lot . .
ASSR_ _ 54 (32-(0+05x29))
d intercept b g
+-2x(1.9-(0+05x23)): = -7.3} )
+2x(14-(0+05x05) <
dSSR _ 5, 20x(32-(0+05x29)
ds]ope fuuuununn:
+2x19x(23-(0+05x19)) i ==-14.81
Calculate the Ste;; Sizes: +-2x0.5x(1.4-(0+0.5x0.3)) ;
one for the intercept...

.' " v \

...and one for the slope. .~~~

-

A
Step Sizeintercept = Derivative x Learning Rate

.
.
o
0

=-7.3x0.01 S
=_0073 wwwwwww Step Sizesiope = Derivative x Learning:ate
o = 148x0.01 , -
) §: -0.1.48 E . .."‘ .5
Take a step from the current s B
intercept, 0, and slope, 0.5, to NOTE: We're using a
get closer to the optimal values... : smaller Learning Rate now

(0.01) than before (0.1)
because Gradient Descent
can be very sensitive to it.
However, as we said earlier,

14

New intercept = Current intercept - Step Sizeintercept

=0-(-0.073) usually the Learning Rate is
......... determined automatically.
i =0073 | :
_.o" ------------- ...and the intercept increases
& from 0 to 0.073, the slope

increases from 0.5 to 0.648, and
the SSR decreases. BAM! :
| 4
New slope = Current slope - Step Sizesiope

P =0.648 :
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Gradient Descent for Two Parameters:

Step-by-Step

And after 475 »=** e,
iterations... '<’A

Evaluate the
@ derivatives at their
current values

...the Step Size was very close
to 0, so we stopped with the
current intercept = 0.95 and
the current slope =-0.64...

e,
.
P

...and we made it to
the lowest SSR. -

"traaa,

This axis
represents *
different values
for the slope...

...and this axis
represents
different values
for the intercept.

...this axis is
for the SSR...

Gradient Descent is awesome,
but when we have a lot of dataora
lot of parameters, it can be slow. Is

there any way to make it faster?

YES! Read on to learn
about Stochastic Gradient
Descent.

Calculate the

Calculate the
Step Sizes...

new values...

@

If, earlier on, instead of using
Gradient Descent, we simply set
the derivatives to 0 and solved for
the intercept and slope, we would
have gotten 0.95 and 0.64, which
are the same values Gradient
Descent gave us. Thus, Gradient
Descent did a great job, and we
can confidently use it in situations
where there are no analytical
solutions, like Logistic
Regression and Neural
Networks.

TRIPLE
BAM!!!
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Stochastic Gradient Descent: Main Ideas

104

So far, things have been pretty ...and we fit a straight line,

@ simple. We started out with a tiny  which only has 2 parameters,
dataset that only had.a points...  the intercept and the slope.

O Height = intercept + slope x Weight

Height =

e

Because there were only 2 parameters, we only had

2 derivatives that we had to calculate in each step...

.

e,

. ‘e
LI

AISSR_ _ _>x(3.2- (intercept + slopex2.9)) %
d intercept

However, what if we had
1,000,000 data points? Then we
would have to compute 1,000,000
terms per derivative.

Ugh!

And what if we had a more
complicated model with 10,000
parameters? Then we would have
10,000 derivatives to compute.

Double Ugh!

Taking 10,000 derivatives, each with
1,000,000 terms to compute, is a lot
of work, and all of that work only
gets us one step into the process
that can take 1,000s of steps!!!

TRIPLE UGH!
Thus, for BIG DATA, Gradient

Descent requires a lot of
computation and can be slow.

4 A
d SSR d SSR
d intercept d slope

...and because we only had 3 data
points, each derivative only needed to
compute 3 terms per derivative.

o 5
AN
.

+-2x (1.9 - (intercept + slope x 2.3) )

+ -2 x (1.4 - (intercept + slope x 0.5) ) .

|
d SSR ]
d slope -2x2.9x(3.2 - (intercept + slope x 2.9))

+-2x2.3x (1.9 - (intercept + slope x2.3))
+-2x0.5x (1.4 - (intercept + slope x 0.5))

The good news is that Stochastic
Gradient Descent can drastically
reduce the amount of computation
required to optimize parameters.
Although it sounds fancy, the word
Stochastic just means Randomly
Determined and all Stochastic
Gradient Descent does is randomly
select one data point per step. So,
regardless of how large your dataset is,
only one term is computed per
derivative for each iteration.

BAM!



Stochastic Gradient Descent: Details Part 1

To see how Stochastic Gradient Descent
works, let’s go back to our simple example,
where we want to fit a line to 3 data points.

v
=

o
0

&7
4

. O :

0

Height =

0
le ©,

And just like with normal Gradient Descent,
we start by initializing the intercept and
slope of the line with random values.

: N
.
LAL S

Werght , O ‘ )
1 B Height = 0 + 0.5 x Weight
Height - ~ O
@) 4

Now we randomly pick one point. Wei'ght
In this case, we’ll pick this one in

the middle. :

ey

Height = Q@ "~

d SSR
d intercept

d SSR
d slope

...and then we
calculate the
Step Sizes...

®

Then, we evaluate the
1 derivatives using just
that single point...

= -2 x ( Height - (intercept + slope x Weight) )

= -2 x Weight x ( Height - (intercept + slope x Weight) )

...and then we
calculate the
new values.
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Stochastic Gradient Descent: Details Part 2

we've optimized the parameters, or until we BAM!

4+ reach a maximum number of steps.

Then we just repeat the last 4 steps until the
@ Step Sizes are super small, which suggests
7 A

Pick a random Evaluate the
@ point from the @ derivatives at their @ giwls?z;he @ r?:\fl\iﬁtjz ;he
v dataset... current values... P

TERMINOLOGY ALERT!!

Although a strict definition of
Stochastic Gradient Descent says
that we only select a single point per !
iteration, it’s much more common to

. randomly select a small subset of
the observations. This is called Mini-

Batch Stochastic Gradient

Descent. Using a small subset,
rather than a single point, usually
converges on the optimal values in
fewer steps and takes much less
time than using all of the data.

...then instead of
randomly selecting one
point per iteration, we
might select 3 points.

For example, if we had
these data and wanted to
use Mini-Batch Stochastic

: Gradient Descent...

v
Height = o O O - B O

L]
Weight
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Gradient Descent: FAQ

Will Gradient Descent always find
the best parameter values?

Unfortunately, Gradient Descent does not always
find the best parameter values. For example, if the
graph of the SSR looked like this....}
...then it's possible that we
might get stuck at the bottom
of this local minimum...

...instead of finding our way to
the bottom and the global
............ »**" minimum.

T LIV
parameter of interest

When this happens (when we get stuck in a local minimum instead of finding the
global minimum), it's a bummer. Even worse, usually it’s not possible to graph the
S8R, so we might not even know we're in one, of potentially many, local
minimums. However, there are a few things we can do about it. We can:

1) Try again using different random numbers to initialize
the parameters that we want to optimize. Starting with
different values may avoid a local minimum.

2) Fiddle around with the Step Size. Making it a little larger
may help avoid getting stuck in a local minimum.

3) Use Stochastic Gradient Descent,
because the extra randomness helps avoid
getting trapped in a local minimum.

How do you choose the size of
a Mini-Batch for Stochastic
Gradient Descent?

Now let’s talk about how to
make classifications using
Logistic Regression, which
has no analytical solution and is
often optimized with Gradient

Descent. ___

The answer to this question really depends
on the computer hardware you're using to
train (optimize) your model. For example,
because one of the main reasons we use

Mini-Batch Stochastic Gradient Descent

is to train our model as quickly as possible,

one major consideration is how much high-
speed memory we have access to. The
more high-speed memory we have, the
larger the Mini-Batch can be.



Chapter 06

Logistic
Regression!!!




Logistic Regression: Main Ideas Part 1

The Problem: Linear Regression and Linear Models are great O = Loves Troll 2
when we want to predict something that is continuous, like Height,

but what if we want to classify something discrete that only has two = Does Not
..+ possibilities, like whether or not someone loves the movie Troll 2? Love T;O" 2
CAY ) ":
- In this example, we measured :
4 g O 000 the amount of Popcorn a bunch :
: [ 3 of people ate (in grams), which
. is continuous, and whether &
"-, '-._. they Love Troll 2 or Do Not e
"’A P rensee ""'*Love Troll 2, which is discrete.
Does Not
Love Troll 2 00 . o r o ' ; The goal is to make a classifier that uses
Popcorn (g) the amount of Popcorn someone eats to

classify whether or not they love Troll 2.

named Logistic Classification since it’s used to classify things, fits a
quiggle to data that tells us the predicted probability (between 0 and 1)
..+ for discrete variables, like whether or not someone loves Troll 2.

o
+

5 Like Linear Regression,
Logistic Regression has

@ A Solution: Logistic Regression, which probably should have been
S

. 1= Loves Trallie n ..-=», Metrics that are similar to
., | Probabilty "R to give us a sense of
4 that someone McFadden’s R2=0.4 how accurate our
loves Troll 2 p-value = 0.03 predictions will be, and it
also calculates p-values.
g=  DoesNot | @) ]
Love Troll 2 Even better, all of the tricks we
- = " can do with Linear Models also

L]
Popcorn (g)

apply to Logistic Regression, so
we can mix and match discrete
and continuous features to make
discrete classifications.

BAM!!!

One thing that is confusing about
Logistic Regression is the name;
it is used for Classification, not
regression!!!

| guess they should
have called it Logistic
Classification!
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Logistic Regression: Main Ideas Part 2
@ The y-axis on a Logistic

Regression graph
represents probability and

goes from 0 to 1. In this
case, it's the probability that
.~ someone loves Troll 2.

o
o .
.
Gl
G
-

The colored dots are the Training Data,
which we used to fit the squiggle. The

data consist of 4 people who Do Not Love
.+ Troll 2 and 5 people who Love Troll 2.

o

o
.
*
.
.
.
x
.

The squiggle tells us the
s predicted probability that
: : someone loves Troll 2,
v v which means that when
! 1=LovesTroll 2 = g © O - the squiggle is close to
H : ..+ the top of the graph,
: : Ferornnineene” there’s a high probability (a
. Probability
. ]\ that someone
i loves Troll 2
R
N 0= Does Not |
Love Troll 2

probability close to 1) that
someone will love Troll 2...
G owyn "y

| |
Popcorn (g)

...and when the squiggle

" is close to the bottom of
the graph, there’s a low

' probability (a probability

close to 0) that someone

will love Troll 2.
@ If someone new

comes along and
tells us that they ate
this much Popcorn...

/

)...then the squiggle tells
us that there’s a relatively
high probability that that
person will love Troll 2.
BRI LY S - o) —
: A Yourriaer
B Probability Specifically, the
y that someone corresponding y-axis value
loves Troll 2 on the squiggle tells us that
: the probability that this
;’_ T :  person loves Troll 2 is 0.96.
%, Love Troll 2
’.‘ | L] 1
t Popcorn (g) 3y
@-lowsTrolz e
_ Does Not
Love Troll 2

110
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Logistic Regression: Main Ideas Part 3

Now that we know the probability that this person will
love Troll 2, we can classify them as someo

ne who
either Loves Troll 2 or Does Not Love Troll ZMand in this case, that
the threshold for classification is 0.5..: means anyone with a
- .." probability of loving
1= Loves Troll 2 = o - Troll 2 > 0.5 will be
* R - === classified as someone
Probability y who Loves Troll 2...
that someone | g —
loves Troll 2 ....and anyone with a
i probability < 0.5 will be
v Boss Nt ) classified as someone who
0= | ove Troll2 ] : ) Does Not Love Troll 2.

|
Popcorn (g)

Thus, in this example, since 0.96 > 0.5,
we’ll classify this person as someone E
who Loves Troll 2.

+
FCLLLT]

e L. o
. LT

o .

1= Loves Troll 2 ®.0

P (P b T
Probability
that someone
loves Troll 2
v

0= Does Not
~ Love Troll 2

T
Popcorn (g)

One last thing before we go: In this example, the
classification threshold was 50%. However, when
we talk about Receiver Operator Curves (ROCs)

in Chapter 8, we'll see examples that use different
classification thresholds. So get excited!!!

TRIPLE BAM!!!

*In a few pages, we'll talk
about how we fit a squiggle
to Training Data. However,
before we do that, we need
to learn some fancy
terminology.

1



Terminology Alert!!! Probability vs. Likelihood:

Part 1

112

Hey Norm, don’t the words
Probability and Likelihood b
~ mean the same thing?

™" In casual conversations, yes, we can use %
Probability and Likelihood interchangeably.
But unfortunately, in the context of statistics,
% these terms have different uses and, in some 4
: cases, completely different meanings. .+

Way back in Chapter 3, when
we described the Normal
Distribution, we saw that the
y-axis represented Likelihood.

In this specific example, the y-
axis represents the Likelihood
of observing any specific Height.

o
Q]

o The Normal
S04 ....ye Distribution’s maximum
7 More Likely e o 4" |ikelihood value occurs
: at its mean.
£y
Less Likely
A Shorter Average Height Taller A
i AOWP H
For example, it’s relatively ...relatively common to ...and relatively rare
rare to see someone who see someone who is close to see someone
is super short... to the average height... who is super tall.



Terminology Alert!!! Probability vs. Likelihood:

Part 2

In contrast, later in Chapter 3, we saw that
@ Probabilities are derived from a Normal
Distribution by calculating the area under
the curve between two points.

168.9 cm
Lastly, in Ghapter 3 we
mentioned that when we
use a Continuous
Distribution, like the
Normal Distribution, the
probability of getting any

1425cm .p  155.7cm
| R Height in cm
\ 4 W

For example, given this Normal

Distribution with mean = 155.7

and standard deviation = 6.6,
the probability of getting a

.
.

.

"

-..Is equal to this area
under the curve, which,
in this example, is 0.48.
So, the probability is

measurement between 142.5 0.48 that we will specific measurement is
and 155.7 cm... measure someone in always 0 because the
this range. area of something with no

width is 0.
@ So, in the case of the
Normal Distribution...»

...Likelihoods are the y-
axis coordinates for
specific points on the
. et CUIVE.T
o 5 ...whereas Probabilities are
More Likely < ') the area under the curve
between two points.

o

Less Likely

142.5 cm 156.7 cm 168.9 cm

] | think | understand
Probabilities, but what do
we do with Likelihoods?

We’ll talk about
that on the next

page.



! Probability vs. Likelihood:

Terminology Alert!!!
Part 3

ikelihoods are often used to evaluate how

L
@ well a statistical distribution fits a dataset.
For example, imagine we collected these
three Height measurements...
X ...and we wanted to compare the fit
of a Normal Curve that has its peak

A
Py to the right of the data...
1 At ...to the fit of a Normal
2274 Curve that is centered
over the data.
n k "haas
155.7 cm 168.9 cm
First, we determine the fo N I -
Likelihoods, the y-axis *=****"*, 142.5 cm 155.7 cm 168.9 cm
coordinates on the curves,
for each data point... 0.06 5 Y
...and, by eye, we can o
see that, overall, the ~ -ikelihood _
Likelihoods are larger PRt y
when we center the -22"""" 0,00 8 0
curve over the data. A 142.5 cm 155.7 cm 168.9 cm
And larger likelihoods 0.06
suggest that the
centered curve fits the e !
data better than the one  Likelihood ¢
shifted to the right.
BAM!!! Q002 . 0—-Q 0 .
142.5cm 155.7 cm 168.9 cm

NOTE: When we try to fit a Normal Curve to
data, we can’t use Probabilities because, as we
saw in Chapter 3, the probability for a specific
point under a Normal Curve is always 0.

Now that we know how to
use Likelihoods to fit curves,
let’s talk about the main ideas
of fitting a squiggle to data for
Logistic Regression.

Lastly, as we just saw with the Normal

Distribution, Probabilities and Likelihoods can

be different. However, as we’ll soon see, this is
not always the case. In other words, sometimes

Probabilities and Likelihoods are the same.

When Probabilities and Likelihoods are the same, we could

use either Probabilities or Likelihoods to fit a curve or a

squiggle to data. However, to make the terminology consistent,

when we're fitting a curve or squiggle to data in a statistical
context, we almost always use Likelihoods.
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0=

®

©

However, because we have two classes of

people, one that Loves Troll 2 and one that -..2****"
Does Not Love Troll 2, there are two ways to
calculate Likelihoods, one for each class.

Fitting A Squiggle To Data: Main Ideas Part 1

When we use Linear Regression, we fit a
line to the data by minimizing the Sum of
the Squared_Residuals (SSR).

In contrast, Logistic Regression
swaps out the Residuals for
Likelihoods (y-axis coordinates)
and fits a squiggle that represents
» the Maximum Likelihood.

.a,

1 = Loves Troll 2

Probability
that someone
loves Troll 2

0= Does Not
~ Love Troll 2

L] L
Popcorn (g)

B 2 O = Loves Troll 2

BN — Does Not
O Love Troll 2
@ For example, to calculate the Likelihood for this

person, who Loves Troll 2, we use the squiggle
to find the y-axis coordinate that corresponds to
the amount of Popcorn they ate...

1 = Loves Troll 2

Probability
that someone
loves Troll 2

Does Not
Love Troll 2

...and this y-axis
coordinate, 0.4, is

both the predicted
probability that they
Love Troll 2 and the
Likelihood.
Likewise, the
Likelihood for this
person, who also
Loves Troll 2, is the y-
r . . axis coordinate for the
Popcorn (g) squiggle, 0.6, that
corresponds to the
amount of Popcorn
% they ate.
1= Loves Troll 2 ,."'
‘r Q
Probability ﬁ» D (L TTTT PP P PP
that someone
loves Troll 2
Does Not
Love Troll 2

L] L] % L L]
Popcorn (g
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Fitting A Squiggle To Data: Main Ideas Part 2

for the people who Do Not Love Troll 2 because

the y-axis is the probability that they Love Troll 2. ®- L'gg:?r r";ﬁ‘z

@ In contrast, calculating the Likelihoods is different = Loves Troll 2

1 = Loves Troll 2 S

punn
ot

The good news is, because ™.

someone either loves Troll 2 or i Probability
they don’t, the probability that that someone
someone does not love Troll 2 is loves Troll 2
just 1 minus the probability that v s Fist
they love Troll 2... = oes No
! 0= | ove Troll 2 O
o ey T T T 1
» A Popcorn (g)

p(Does Not Love Troll 2) = 1 - p(Loves Troll 2)

...and since the y-axis is both probability and
likelihood, we can calculate the Likelihoods
with this equation.

o
oy,

A A
L(Does Not Love Troll 2) = 1 - L(Loves Troll 2)

For example, to calculate the Likelihood for
this person, who Does Not Love Troll 2...
1 = Loves Troll 2

Probability
that someone
loves Troll 2

...we first calculate the
. Likelihood that they
Popcorn (g) Love Troll 2, 0.8...

_ Does Not
~ Love Troll 2

1 =Loves Troll 2

...and then use that value

mpabiy to caloulate the Likelihood
loves Troll 2 that they Do Not Love
Troll2=1-0.8=0.2.
_ Does Not
0= | ove Troll 2 Bam!

Popcorn (g)
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Fitting A Squiggle To Data: Main Ideas Part 3

Now that we know how to calculate the Likelihoods for
people who Love Troll 2 and people who Do Not Love Troll ...and when we
2, we can calculate the Likelihood for the entire squiggle by do the math, we
multiplying the individual Likelihoods together..: get 0.02..,
1 = Loves Troll 2 JRCLLLEN "
o 4
Probability .
it e 04x06x0.8x0.9x0.9 E
loves Troll 2 x0.9x0.9x0.7 x0.2 = 0.02
ey "
0= Does Not AT .
~ Love Troll 2 K
L] | L] 1
Popcorn (g) :
(4
VS.
~

Now we calculate the Likelihood H
for a different squiggle. \/\ :
7 ...and compare the total :

Likelihoods for both 7

1 = Loves Troll 2 O @ OO .. squiggles. :
Probability Y A A T Ty i
e i 0.1x02x0.6x0.7x0.9
loves Troll 2 Ty D
oen.. x0.9x0.9x0.9x0.8=0.004
_ Does Not ) B

~ Love Troll 2

L]
Popcorn (g)

The goal is to find the
squiggle with the
Maximum Likelihood.

In practice, we usually find
the optimal squiggle using
Gradient Descent.

TRIPLE BAM!!!
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Fitting A Squiggle To Data: Details

The Iex?mlple We""{l? used sonar has » <o when we multiplied the 9
are atu;e y lsrga raining I ataset Likelihoods together, it was easy,
of only 9 points total..: and we got 0.02. +-.,.

0
0
.

LY
b3

1 = Loves Troll 2 - © @ 000
Probability T 04x06x08x09%09  y

that someone
loves Troll 2 weeee P x0.9x0.9x0.7 x0.2 =0.02

.
aust®

v L4
Does Not ke
0= vetoi2] @O O o
]

Popcorn (g)

anuns
annnt
wst®

However, if the Training Dataset was W
much larger, then we might runintoa .-=""»
computational problem, called Underflow,
that happens when you try to multiply a lot

of small numbers between 0 and 1.

Technically, Underflow happens when a
mathematical operation, like multiplication, results

in 2 number that’s smaller than the computer is If you'd like to learn more details
capable of storing. about Logistic Regression,
scan, click, or tap this QR code
Underflow can result in errors, which are to check out the ‘Quests on
bad, or it can result in weird, YouTubel!!

unpredictable results, which are worse.

natural log, or log base e), which turns

A very common way to avoid Underflow
@ errors is to just take the log (usually the
the multiplication into addition...

log(0.4 x 0.6 x 0.8 x0.9x0.9x0.9x0.9x0.7 x0.2) ',

=log(0.4) + log(0.6) + log(0.8) + 1og(0.9) + log(0.9)
+10g(0.9) + l0g(0.9) + log(0.7) + log(0.2)

=-4.0
A ...and, ultimately, turns a
. number that was relatively close
s to 0, like 0.02, into a number

.
o

relatively far from 0, -4.0.

. s
L wanne®
R P L
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Logistic Regression: Weaknesses

have more than one independent variable, an s-shaped surface) will fit the data well. In
other words, we assume that there’s a relatively straightforward relationship between

the Popcorn and Loves Troll 2 variables:

if someone eats very little Popcorn, then
there’s a relatively low probability that

@ When we use Logistic Regression, we assume that an s-shaped squiggle (or, if we

1 = Loves Troll 2

th’;?;,ﬁgge they love Troll 2, and if someone eats a
loves Troll 2 lot of Popcorn, then there’s a relatively
high probability that they love Troll 2.
0= Does Not
~ Love Troll 2

L]
Popcorn (g)

In contrast, if our data had people who
ate a little or a lot of Popcorn and both
groups do not love Troll 2..:

-

-

Y
.

1 = Loves Troll 2 O @ O ...and people who ate an

/ - Y intermediate amount do,

Frobebiity i Yo, _..-="" then we would violate the

ﬂl‘j\} es; ;nr:fl’ r;e : e ' assumption that Logistic

v Regression makes
v Do Nk freagy about the data.
s Love Troll 2 OO O O m
] | L] L]
Popcorn (g)

1 = Loves Troll 2

And if we used Logistic
Regression to fit an s-
shaped squiggle to the

Probability
thatsomeone | & e «..,,  data, we would geta
loves Troll 2 **+.. horrible model that
v misclassified everyone who
0~ DoesNot ate a lot of Popcorn as
Love Troll 2

someone who loves Troll 2.

Now let’s talk about
about classification
with Naive Bayes!!!

@Thus, one of the limitations of Logistic

Regression is that it assumes that we can fit an
s-shaped squiggle to the data. If that’s not a
valid assumption, then we need a Decision Tree
(Chapter 10), or a Support Vector Machine
(Chapter 11), or a Neural Network (Chapter
12), or some other method that can handle more
complicated relationships among the data.
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Chapter 07

Naive Bayes!!




Naive Bayes: Main Ideas

@ The Problem: We start

with a jumble of
messages: some of them

are Normal messages ...."
from friends and family...

...and we want to
separate the Normal
...and some of them are \/
Spam, unwanted messages
that are usually scams or *
unsolicited

messages from the
advertisements...

Spam.
M ) 2 |

A Solution:
We can use a Naive

@ Let's say we get a message =-.
that says Dear Friend, and we
Bayes classifier, want to classify it as either

one of the simplest, but

surprisingly effective
machine learning methods.

Normal or Spam. We'll need
two different equations: one for
Normal and one for Spam.

@ First we multiply the Prior

...by the probabilities of seeing the words Dear
Probability, which is an

initial guess, that the
message is Normal...

and Friend, given (NOTE: the vertical bar, |,
F- LAY

stands for given) that the message is Normal.
d

A
“.., P(N)xp(Dear|N)xp(Friend | N )'

.
.
.
.
.

p(S)xp(Dear|S)xp(Friend|S
Then we compare that to ' Y '..-"
the Prior Probability, = jiinjied by the probabilities of
another initial guess, that seeing the words Dear and Friend,
the message is Spam... given that the message is Spam.

@ Whichever equation gives us the

larger value, which we’ll call a score, *
tells us the final classification.

‘_-V ~

K2
oid
»
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Multinomial Naive Bayes: Details Part 1

There are several types of Naive

Bayes algorithms, but the most

commonly used version is called
Multinomial Naive Bayes.

We start with Training
Data: In this case we have
8 messages that we know

are Normal..:

.

Then we make a histogram
for all of the words in the
Normal messages...

] K

]

] <

| | |

| |

| | | B

] [ | &

| || | [
Dear Friend Lunch Money

.

Now we calculate the probabilities
of seeing each word given that they

came from Normal messages.

..............
.......
..............

‘...and 4 messages that
we know are Spam.

s
o
<’
L
*a
.
5
hel 3
.
.
Yo
.
)

...and a histogram for all of the
words in the Spam messages. :

u A,
||
|
|

[ | |
Dear Friend Lunch Money

"
.
‘e

For example, the probability that we =«--.., v
see the word Dear given (remember, i g [T
the vertical bar, |, stands for given) that p( Dear | N ) = W = 0.47:.,
we see it in Normal (N) messages... ' e 1 %
e -
...is 8, the number of times Dear occurs in A :
Normal messages, divided by the total numlIM!and wegatar. ::

of words in the Normal messages, 17...

Then we do the same thing

for all the other words in the
Normal messages. ==
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p(Friend | N)=0.29
(Lunch|N)=0.18

g
p(Money | N) = 0.06



Multinomial Naive Bayes: Details Part 2

Then we calculate the probabilities

@ of seeing each word given that 0
they came from Spam messages. B ]

Dear Friend Lunch Money

‘ ...........

For example, the probability that we _,.......

see the word Dear given that we see -
it in Spam (S) messages... p( Dear | S ) -

et
.

...is 2, the number of times Dear occurs in :
Spam messages divided by the total nuM RAd WS got0-23.

words in the Spam messages, 7..

Then we do the same lthing p(Friend | S)=0.14
for all the other words in the v
Now we calculate Prior Spam messages. M, P {Lunoh|&)~0.00
Probabilities. In this X 5(Money | S ) = 0.57
context, a Prior Probability

is simply a guess that we
make without looking at the

/ NOTE: The Prior Probabilities can be any
wgrd; in the message about ;¢ of probabilities we want, but we usually
wheather or not a message is derive them from the Training Data.
Normal or Spam.
For example, because 8 of the 12 messages «=++=+-.
e are Normal, we let the Prior Probability for T
Normal messages, p(N), be 8/12 = 0.67...
e ot T %
B Normal M g r
OoT Norma essages : :
p(N)= 985 = Z1= 0.67:
Total # of Messages I —— ;
#of Spam Messages _ 4 | an :
p(S)= ==L 995 _ = i=0.33i

v.  Total# of Messages 12 5

...and because 4 of the 12 messages are......---“"
Spam, we let the Prior Probability for
Spam messages, p(S), be 4/12 = 0.33.
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Multinomial Naive Bayes: Details Part 3

Now that we have the ...and the probabilities for  ...we can calculate the overall
@ Prior Probability fog each word occurring iu score that the message, Dear

FparT messages: £ Normal messages. .. Friend, is Normal...
'i ..+ p(Dear |N)=0.47

p( N ) = 0_57 p(Friend |[N)=0.29,

v v o R
p(N)xp(Dear|N)xp(Friend | N)=0.67 x 0.47 x 0.29:= 0.09
’:..' ) Y-._. A HETT ;....-

*
. R

.
.

.
o,
e,

...by multiplying the Prior  ...by the [.:).robabilities of seeing  ...and when we
Probability that the ) the words Dear and Friend in 9§ do the math, we ,»*

-
.

message is Normal.. Normal messages... get 0.09.

Likewise, using the ...and the probabilities ...we can calculate the overall
Prior Probability for for each word occurrinV score that the message, Dear
,Spam messages. .- in Spam messages... Friend, is Spam, and when

H we do the math, we get 0.01.
~ .- p(Dear|S)=0.29 .

p(S)=0.33 p(Friend |S)=0.14 ,

. o
D o
Pod . .
o . " -
. D
wnnus® -
. 5 3
.
. .
. . &
&
4
G
o+

; ; ’ i
p(S)xp(Dear|S)xp(Friend|S)=0.33x0.29 x0.14§= 0.01:

Although Naive Bayes is
one of the simpler machine
learning methods, it is
surprisingly useful!
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Multinomial Naive Bayes: Details Part 4

Now, remember the goal was to
classify the message Dear Friend

as either Normal or Spam...

...and we started with
Training Data, 8 Normal
and 4 Spam messages...

...and we calculated Prior p(N) = # of Normal Messages _ ( g7
Probabilities, which are just 7 Total # of Messages ’
guesses that we make without <2,
looking at the contents of a
message, that a message is either p(S)= # of Spam Messages _ 34

Normal or Spam._.\ Total # of Messages

...and we created
histograms of the words in

",

=] the messages...
=)
S
<
= 0 =
O El | m
O0 | | o
[ JE | | O || [
Dear Friend Lunch Money Dear Friend Lunch Money
p(Dear |N)=0.47 p(Dear|S)=0.29
< Y. ...and we used the =4 . _
p(Friend |N) = 0.29 "= histograms to calculate « p(Friend | 3)=0.14
p(Lunch|N)=0.18 ‘;.-‘ probabilities... ."4 p(Lunch | S)=0.00
p(Money | N)=0.06 p(Money |S)=0.57
'S
...then, using the Prior Probabilities ...and now we can finally classify Dear
and the probabilities for each word, Friend!!! Because the score for Normal
given that it came from either a (0.09) is greater than Spam (0.01), we
Normal message or Spam, we classify Dear Friend as a Normal message.

calculated scores for Dear Friend..=
Dear Friend

== A
p(N)xp(Dear | N)xp(Friend | N) = 0.67 x 0.47 x 0.29 = 0.09 BAM!Il!

p(S)*p(Dear|S)xp(Friend | S) = 0.33 X 0.29 X 0.14 = 0.01
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Multinomial Naive Bayes: Details Part 5

The reason Naive Bayes is naive, is that
it’s simple: it treats all of the words
independently, and this means it ignores

word order and phrasing.

So, both Dear Friend and Friend Dear get the same score, 0.09.

'o!

»
.
O] DR
o . D *a,
.
"

o 4 A
" i p(N)xp(Friend | N)Xp(Dear|N) =067 X 0.29 X 0.47 = 0.09
2 \/

p(N)xp(Dear | N)xp(Friend | N)=0.67 X 0.47 X 0.29 = 0.09

Missing data can, in theory, bea  ...and that means that the
@ problem. Remember, in the last probability of seeing
example, the word Lunch didn’t Lunchin Spamis 0... ...and this means that
occur in any of the Spam... any message that

5 contains the word
* Lunch will be classified

o %tag p(Dear|S)=029  : a5 Normal because the
i P p(Friend |S)=0.14 ;i  score for Spam wil
- :. E . f'""""'""""""""Ef: always be 0.
| ZEY . : p(Lunch |S)=0.00:
| A b.: B eerreererrssssssanansies .
B H & p(Money | S) =0.57

Dear Friend Lunch Money

For example, if we
so this maseage. . » Money Money Money Money Lunch

...which looks like it could be Spam because it
has the word Money in it a bunch of times.

However, when we/.because p(Lunch|S) =0, and
calculate this score. = anything times 0 is 0, we get 0.

.
i
o

"
wt

.
.
o

4 ."A
p(S)*p(Money | S)Xp(Money |S)xp(Money |S)xp(Money|S)Xp(Lunch|S) V

#Good thing there's an easy %
way to deal with the problem %
"%of missing data!!! Read on for#

’ the solution. &
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Multinomial Naive Bayes: Dealing With

Missing Data

else based on histograms. As we saw in Chapter 3, we can easily

Missing data can pose a real problem for Naive Bayes or anything
have missing data if the Training Dataset is not large enough.

So, Naive Bayes eliminates the problem of missing data
by adding something called a pseudocount to each word.

A pseudocount is just an extra value added to
each word, and usually adding pseudocounts

@ means adding 1 count to each word. Here the

pseudocounts are represented by black boxes.

NOTE: pseudocounts are |
added to every word in both
' histograms, even if only one

] - histogram has missing data.
| o

| i

| | "o,

Bl [ < % | |

2] [ | | | v | |

] O ] | | 5]

| O B | | i

] H | [ |

| ] [ |
Friend Lunch Money Dear Friend Lunch Money

After we add the pseudocounts
to the histograms, we calculate

the probabilities just like before,

Dear

only this time we include the 5 p(Dear IN)=043  p(Dear|S)=027
pseudocounts in the p(Friend [N)=0.29 p(Friend|S)=0.18
calgilations: p(Lunch|N) =019 p(Lunch|S)=0.09
841 T " p(Money |N)=0.10 p(Money|S)=0.45
Dear |N) = i=0.4
piBsar | N) = mgi= 045

---------------

Now the scores for this
message are... Money Money Money Money Lunch

p(N) % p( Money | N }* x p(Lunch | N ) = 0.67 X 0.10¢ x 0.19 = 0.00001

p(S)xp(Money | S ) xp(Lunch | S ) = 0.33 x 0.45¢ x 0.09 = 0.00122

Because Money Money Money
Money Lunch has a higher score
for Spam (0.00122) than Normal
(0.00001), we classify it as Spam.

=

SPAM!!!
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Multinomial Naive Bayes vs. Gaussian

Naive Bayes

So far, we’ve shown how Naive Bayes =
works with discrete data, like individual o
i words in a message... = ]
% O [ ]
.., Spam ...by building __..... » = = =
‘A histograms... o ] ] ]
r‘/ O | m m
...and using the Dear Friend Lunch Money
histograms to calculate * m
. ..+ Pprobabilities that are used [
A LU LTELL o to make classifications. = ]
7 ] || i
p(Dear |N)=0.43 p(Dear|S)=0.27 L [ | B
Dear Friend Lunch Money
p(Friend |[N)=0.29 p(Friend |S)=0.18
p(Lunch |N)=0.19 p(Lunch|S)=0.09
p(Money |N)=0.10 p(Money |S) =

— | f 41

In contrast, when we have continuous data,
like these measurements for Popcorn, Soda
Pop, and Candy consumption taken from 4

people who Love Troll 2..:

...and from 3
people who Do
Not Love Troll 2...

Popcorn Soda Pop Candy

Popcorn |Soda Pop | Candy

(grams) (ml) (grams) (grams) (ml) (grams)
ﬁ ﬁ 28.2 533.2 50.5
etc. etc. etc.

...we can calculate the
means and standard
deviations of each
column to draw
«- Gaussian (Normal)
curves..

...and use these

curves to make

classifications.

Read on to learn
how!
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Gaussian Naive Bayes: Details Part 1

First we create Gaussian (Normal) curves for P
: it opcorn
each Feature (each column in the Training {grams)
Data that we’re using to make predictions). 9

243
Starting with Popcorn, for the people who Do 28.2
Not Love Troll 2, we calculate their mean, 4, 4
and standard deviation (sd), 2, and then use 2
. those values to draw a Gaussian curve. 51
Then we draw a Gaussian curve for the 4.8
i people who Love Troll 2 using their mean, etc.
5 24, and their standard deviation, 4.
Y

mean =4 :
sd=2

Soda Pop
(ml) S

750.7 Likewise, we draw
533.9 NI, curves for Soda Pop...

v,
--------

Soda Pop

Candy
(grams)
0.2 »

Sils | ...and for Candy.
etc.

90.7
102.3

mean = 100
etc.

sd =20

Candy
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Gaussian Naive Bayes: Details Part 2

Now we calculate the Prior Just like for Multinomial Naive Bayes, this Prior
Probability that someone Probability is just a guess and can be any probability
Loves Troll 2. we want. However, we usually estimate it from the

number of people in the Training Data.

0
L3
o

v
.
.

-
.
.
ant®
s

¥ ~
p(Loves Troll 2) = # of People Who Love Troll 2 _ 4, = 0.6
Total # of People 4 + 3}

ﬁ ﬂ In this case, the Training Data
%, came from 4 people who :

€ ove Troll 2and S people.

who Do Not Love Troll 2. ©:***

Does Not Love Troll 2...

'y
Then we calculate the Prior ﬁ
Probability that someone

p( Does Not Love Troll 2) =# of People Who Do Not Love Troll 2
Total # of People

&~

= zi-;:-zi =

@ Now, when a
new person
shows up... ‘...and says they

ate 20 grams of
Popcorn...

By ...and drink 500 ml
of Soda Pop...

",

"
",
., ay

...and ate 100
., grams of
“, Candy...
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Gaussian Naive Bayes: Details Part 3

...we calculate the score for Loves
Troll 2 by multiplying the Prior

Prg‘babllltv that they Love Troll 2.'... ------ I S, SRR x ~~_ Popcorn
iq ‘..." ) e = X T - >
p(Loves Troll 2) [ B L L LT T K
x L(Popcorn =20 | Loves ) b “\.Soda Pop
A X L(Soda Pop =500 | Loves ) 4
£ x1(Candy = 100 | Loves ) <., - X
...by the Likelihoods, the y-axis \
coordinates, that correspond to 20 5 J \ Candy
grams of Popcorn, 500 ml of Soda RN S L ITTT \v4
Pop, and 100 grams of Candy, A o
given that they Love Troll 2.

...we end up plugging in a tiny

NOTE: When we number for the Likelihood of Candy,
plug in the actual because the y-axis coordinate is
numbers... super close to 0... \
p(Loves Troll 2) sresrressmsssssansrnnsanannss » 0.6
H ...and computers can
x L(Popcorn = 20 | Loves ) re=srsssrmsnsees » x 0.06 ; have trouble doing
x L(Soda Pop =500 | Loves ) ===x=ssrenses » x 0.004 4 multiplication with
grendestasssns ¢ numbers very close
KL Gty =100 Laves:) sorssmsssssnsssrs > 0:000000009...991 to 0. This problem is
called Underflow.
To avoid problems associated with numbers close to
0, we take the log (usually the natural log, or log
base e), which turns the multiplication into addition...
“' ...... .t v
log(0.6 x 0.06 x 0.004 x a tiny number) = log(0.6) + log(0.06) + log(0.004) + log(a tiny number)
T 4
-..and turns numbers close t0 0 wuusyynzeessmeersss®™” srenet?
into numbers far from0... ~"w
A ’
=-0.51+-2.8 +-552 +-115 i=-124
...and when we do the 1
math, the score for Loves ot

Troll 2 = -124. ,

ws®
. ws
"e we
...................
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Gaussian Naive Bayes: Details Part 4

Likewise, we calculate the score for
Does Not Love Troll 2 by multiplying
the Prior Probability...

, Popcorn
», ....... 2 )
o(No Love) ‘_
x L(Popcorn =20 | No Love ) Soda Pop

x L(Soda Pop = 500 | No Love ) < ..
x L(Candy = 100 | No Love ) <
iy

- 0
. pETTY

...by the Likelihoods from the Does Not
Love Troll 2 distributions for Popcorn,
Soda Pop, and Candy. But before we do
the math, we first take the Ic.)g...

o
o
JPCTLLLLETINON o

ng(p( No Love )

I % log(L( Popcorn = 20 | No Love ) -.-then we plug in the
: numbers, do the math,
+log(L( Soda Pop = 500 | No Love )) and get -48.
:  +log(L(Candy = 100 | No Love )) 3
log(0.4) + log(a tiny number) + log(0.00008) + log(0.02)
.l -------- - .'
=-0.92 + -33.61 + -9.44 + -3.91 =-48 : &
Lastly, because the score for Does Not Love ...as someone who
Troll 2 (-48) is greater than the score for Loves Does Not Love Troll 2.
R Troll 2 (-124), we classify this person...
.:0.‘ i '..... .:
Log( Loves Troll 2 Score ) =-124 g &

“A Log( Does Not Love Troll 2 Score ) = -48

DOUBLE
BAMII!

#” Now that we understand™
Multinomial and Gaussian

1 Naive Bayes, let’s answer

*,_ some Frequently Asked ,
"N, Questions.




Naive Bayes: FAQ Part 1

If my continuous data are not Gaussian, can | still use Gaussian Naive Bayes?

Although the Gaussian (Normal) distribution is the
most commonly used, we can use any statistical
distribution in combination with Naive Bayes.

‘/‘\_/
_.++ For example, if this Exponential distribution

& represents the amount of time spent reading
:  books among people who Love to Watch TV...

"-‘ ...then we can plug the Likelihood — the
: y-axis coordinate that corresponds to the
Miais Likeel £ specific amount of time spent reading —

into the equation for the score for Loves
To Watch TV.**=..,

Less Likely - B
5 r T T T » %
: 0 Time Spent Reading > 10 15 3
p( Loves TV Prior Probability )
i S » xL(Reading = 3| Loves TV)

However, there’s one problem with using an
Exponential distribution...

...we can't call it Gaussian Naive Bayes anymore!!!
Now we’ll call it Exponential Naive Bayes.

Silly Bam. :)
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. What if some of my data are discrete
Nalve Bayes: FAQ Pal't 2 and some of my data are continuous?
Can | still use Naive Bayes?

Yes! We can combine the histogram approach from Multinomial Naive
Bayes with the distribution approach from Gaussian Naive Bayes.

...and combine those with Likelihoods
from Exponential distributions that
and Spam, we could use them represent the amount of time that
to create histograms and elapses between receiving Normal
messages and Spam...

.+ probabilities...
.'.ovl A/—\_/",

...to calculate Normal and Spam scores Si
R

For example, if we had word
counts from Normal messages

for the message Dear Friend, received
after 25 seconds elapsed, using both
discrete and continuous data. o

SPPTTLLEETIN

A

[ |
| s
Likelihood P

Lunch Money
log(p( Normal )) ] \I
+log( p( Dear | Normal )) Time between Normal messages

"y 4 log(p( Friend | Normal )) ¥
+ log(L( Time = 25 | Normal ))

aa.,
"aa

u
[ ]
= - = Likelihood
m ] [] il
Dear  Friend Lunch Money :
o ' Time between Spam
i loglp(Spam)) + log(p(Dear| Spam))
______ y +log(p(Friend | Spam )) + log(L( Time = 25 | Spam ))

TRIPLE SPAM!!!

What do you call it when we
mix Naive Bayes techniques
together?

| don’t know, Norm.
Maybe “Naive
Bayes Deluxe!”




Naive Bayes: FAQ Part 3

How is Naive Bayes
related to Bayes’
Theorem?

p(N | Dear Friend) =
p(S)xp(Dear|S)xp(Friend|S)

N)xp(Dear|N)xp(Friend |N)+p(S)xp(Dear|S)xp(Friend |S)

p(S | Dear Friend) =
p(N)xp(Dear|N)xp(Friend |N)
N)xp(Dear|N)Xp(Friend |N)+p(S)Xp(Dear|S)xp(Friend|S)
< T

o
ot
+
.

If we wanted to do extra math that & "
wouldn't change the result, we & .o
could divide each score by the sum #**
of the scores, and that would give
us Bayes’ Theorem.

Because the denominators are
the same in both equations, the
results are determined entirely by
the numerators. So, to save time
and trouble, often the
denominators are omitted.

small bam.

Hey Norm, now that we know two
different ways to make classifications,
how do we choose the best one?

* Great question ‘Squatch!
And the answer is in the next
chapter, so keep reading!
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Chapter 08

Assessing Model
Performancel!!




Main Ideas

Assessing Model Performance:

The Problem: We've got this s:-..,, Good
dataset, and we wantto use ., i Biood |~ 24 ieighe | Heart
it to predict if someone has ™. Arteries Dlsgase
Heart Disease, but we don’t 2
know in advance which .
4 Yes Yes Yes 180 Yes

model will make the best
predictions.
Yes Yes No 210 No

Should we choose
Naive Bayes. ‘—\L
...or Logistic

Regression? “"--..,

[ |
i ®HE EE NEm
& EE EE EBE
| 4 Chest Blood Blocked
Pain Circ.  Arteries

A Solution: Rather than worry too much upfront about
which model will be best, we can try both and assess

their performance using a wide variety of tools...

...from Confusion

Has Heart Does Not Have
Disease Heart Disease Matrices, simple grids
Has Heart ¥i5 59 that tell us what each
T Disease model did right and what
2 each one did wrong...
< Does Not Have ot
fiaait Disaasa 29 ‘ 110 v.

it ...to Receiver Operator
“*e........Curves (ROCs), which give
us an easy way to evaluate
how each model performs
with different classification
thresholds.

True
Positive
Rate

BAM!!!
Let’s start by learning
0= about the Confusion

+ 1 -
Matrix.

T
0 False Positive Rate 1
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The Confusion Matrix: Main Ideas

So we have this dataset that we can Gheot Good Blocked Heait
use to predict if someone has Heart <% eS| Blood  9%%®Y weight o

Disease, and we want to decide ., [ RHbe L b sl
between using Naive B:':lyes and 4 No No No 125 No
Logistic Regression.
Yes Yes Yes 180 Yes
Yes Yes No 210 No

Good

Chest Blood

Pain

Blocked

Girc. Arteries

We start by
dividing the data

+.rsp INtO two blocks...

...and we use the first block
to optimize both models using
Cross Validation.

...2) the number of
people with Heart
Disease who were
,.e==" Incorrectly predicted to
not have Heart Disease...

Then we apply the optimized Naive Bayes model
to the second block and build a Confusion Matrix
that helps us keep track of 4 things: 1) the number

of people with Heart Disease who were correctly
: predicted to have Heart Disease..:

e,

0 : ...3) the number of people
y  [EEE T e without Heart Disease who
were correctly predicted to
Has Heart "=, .+ not have Heart Disease...
T Disease A 142 ‘ 22 Weaapes
g Does Not Have € ...and, lastly, 4) the number of
. 29 110 i .
Heart Disease Y. people without Heart Disease
who were incorrectly predicted
S itiiiiivisieesesssset t0 have Heart Disease.
We then build a Confusion ...and, at a glance, we can see that Logistic
Matrix for the optimized Regression is better at predicting people
Logistic Regression model..:

.

without Heart Disease and Naive Bayes is

better at predicting people with it.
=. _
A Yes No Now we can pick the model based on

whether we want to identify someone with
Yes 137 22 or without Heart Disease.
No 29 115

BAM!!

Actual



The Confusion Matrix: Details Part 1

When the actual and predicted ...when the actual value is YES,
values are both YES, then we but the predicted value is NO, then
call that a True Positive... we call that a False Negative...

.

., Predicted

Yes No &
4 o
= Yes True Positives | False Negatives
3
g
No False Positives | True Negatives
vl
! ...when the actual and
...and when the actual value is *., predicted values are both NO,
NO, but the predicted value is “*+=x then we call that a True
YES, then we call that a False * Negative...
4 Positive.

Hey Norm, of all the
matrices I've seen in my day,
the Confusion Matrix is one

of the least confusing.

Agreed!

139



The Confusion Matrix: Details Part 2

When there are only two possible
outcomes, like Yes and No...

Blocked z Heart
Arteries Weight Disease
Yes Yes Yes 180 Yes
Yes Yes No 210 No

When there are 3 possible
outcomes, like in this
dataset that has 3 choices
for favorite movie, Troll 2, ....
Gore Police, and Cool as
Ice...

...then the corresponding
Confusion Matrix has 2
rows and 2 columns: one

each for Yes and No.,

Does Not Have

Has Heart
Disease Heart Disease

142 ‘ 22

29 ’ 110

Has Heart
Disease

Does Not Have
Heart Disease

é.then the corresponding
Confusion Matrix has 3
L. FOWS and 3 columns.

Park Il
Yes No Yes Yes Troll 2 -
No No Yes No Gore & :
Police R Y
No Yes Yes Yes Cool as :'.
‘:V Troll 2 Gore Police  Cool As lce
Troll 2 142 22
In general, the
size of the =
matrix g Gore Police 29 110

corresponds to
the number of
classifications
we want to
predict.

Bam.
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The Confusion Matrix: Details Part 3

Unfortunately, there’s no standard for how a
Confusion Matrix is oriented. In many cases, the
rows reflect the actual, or known, classifications

and the columns represent the predictions.

K
.
Do
oY
.
.
o *
B .
" 3
+
o
aust

‘,.-"" Predicted

of

V-‘ Has Heart Does Not Have
Disease Heart Disease
Has Heart True False
- 3 : In other cases, the rows reflect
[} Disease iti T
E Positives | Negatives the predictions and the
< Does Not Have False True columns represent the actual,
Heart Disease = Positives Negatives or known, classifications.
& \
o Actual
: 5 Has Heart  Does Not Have
So, make sure you read o \ 4 Disease Heart Disease
the labels before you g T Fal
interpret a Confusion ™ 3 H&i:a‘:” 5 L ‘ P ogtisve e
Matrix! % ositives
g
[-5

Does Not Have False ‘ True

Heart Disease ~ Negatives Negatives

Hey Norm, | guess this means
that Confusion Matrices really
can be confusing if you’re not
careful!

Double
Agreed!!




The Confusion Matrix: Details Part 4

Gentle Reminder:

. 5t P Predicted
@Lastly, in the original example, when we True Positive False

compared the Confusion Matrices for ~ § ., | Yes No  Negative
Naive Bayes and Logistic Regression... § Yes ™ TP FN |«
: g

Naive Bayes

Yes No "-_. False Positive-~ ¥ Negative
Yes 142 22 :

Actual

...because both matrices contained the
same number of False Negatives (22

No 29 110

- . each) and False Positives (29 each)...
Regression  ye G +  ...all we needed to do was compare the True

.~ Positives (142 vs. 137) to quantify how much better
Yes 137 22 Naive Bayes was at predicting people with Heart
No 29 115 Disease. Likewise, to quantify hom{ much better
Logistic Regression was at predicting people
without Heart Disease, all we needed to do was
compare the True Negatives (110 vs. 115).

Y.

However, what if we had ended up with A .
different numbers of False Negatives We can still see that
and False Positives? Naive Bayes is better at

predicting people with
L Heart Disease, but
¢ Logie b
Naive Bayes  voq No b Regression  ves No 7 complicated because
=l ves 142 29 Sl YVes 139 30 now we have to compare
2 é True Positives (142 vs.
& No 22 110 No 20 112 139) and False

Negatives (29 vs. 32).

And we still see that Logistic Regression is better at
predicting people without Heart Disease, but quantifying
how much better has to take True Negatives (110 vs. 112) <

and False Positives (22 vs. 20) into account.

The good news is that we have metrics that include
various combinations of True and False Positives

with True and False Negatives and allow us to easily
quantify all kinds of differences in algorithm
performance. The first of these metrics are Sensitivity

and Specificity, and we'll talk about those next.
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Sensitivity and Specificity: Main Ideas

When we want to quantify how well an
algorithm (like Naive Bayes) correctly
classifies the actual Positives, in this

case, the known people with Heart
Disease, we calculate Sensitivity, which

is the percentage of the actual Positives

that were correctly classified.

For example, using the Heart Disease
data and Confusion Matrix, the
Sensitivity for Naive Bayes is 0.83...

TP 142

Sensitivity = ————— = ——— =0,
TP+FN 142 +29 .

...which means that 83% of the people with
Heart Disease were correctly classified.

BAM!!!

True Positives

Sensitivity = —_ -
A True Positives + False Negatives
,-'. Predicted
K]
3
<
"
Naive Bayes v, No
Yes 142 | 29

When we want to quantify how well an algorithm (like Logistic

@ Regression) correctly classifies the actual Negatives, in this case, the
known people without Heart Disease, we calculate Specificity, which is

the percentage of the actual Negatives that were correctly classified.

s

4

Specificity = True Negatives

True Negatives + False Positives

Predicted

Yes No

Actual

ﬂNo FPFTN]

Gentle Reminder:

True Positive Ikt False

L Yes No  Negative |

Yes »TP | FN <
No | FP | TN | .o

False Positive-~¥ --Negative

Actual

For example, using the Heart
Disease data and Confusion
Matrix, the Specificity for
Logistic Regression is 0.85...

3
.

Regression

Yes No
2 No 20 | 112 |
¥
Specificity = o U
TN+FP 112+20

‘ ...which means that 85% of the

people without Heart Disease
were correctly classified.

DO U BLE Now let’s talk
about Precision
BAM!!!

and Recall.
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Precision and Recall: Main Ideas

Precision is another metric that can summarize a
Confusion Matrix. It tells us the percentage of the
predicted Positive results (so, both True and False

", Positives) that were correctly classified. \> For example, using the Heart

= 4 True Positives Disease data and Confusion

Precision = i isi
True Positives + False Positives M‘“.""’ e Prgcle‘.lon for
5 Naive Bayes is 0.87.... *-,

.
anman®

Actual

3 Naive Bayes %
Yes
.| Yes
e P Yes ‘142
No | FP - HED

...which means that of the 164 people that ) 145 s
we predicted to have Heart Disease, 87% Precision = = = ——m—=0.87
actually have it. In other words, Precision TP+FP  142+22

gives us a sense of the quality of the positive

Actual

results. When we have high Precision, we * Gehte Remifider:
have high-quality positive results. y
True Positive False

. Yes No ' Negative

Yes TP | FN <«

No FP TN

Recall is just another name for | '~ Truq
Sensitivity, which is the percentage  § False Positive-- *- Negative

. of the actual Positives that were
s correctly classified. Why do we
¢ need two different names for the
same thing? | don’t know. |
< ® | Yes TP FN
True Positives g : .
True Positives + False Negatives

Actual

Predicted

Recall = Sensitivity =

Hey Norm, | have trouble
remembering what Sensitivity,
Specificity, Precision, and

Recall mean.

Agreed! But Josh’s
Silly Song makes it
a little easier.
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True Positive Rate and False Positive

Rate: Main Ideas

The True Positive Rate is the same thing as Recall, which is
@ the same thing as Sensitivity. | kid you not. We have 3

names for the exact same thing: the percentage of actual
Positives that were correctly classified. TRIPLE UGH!!

True Positives

True Positive Rate = Recall = Sensitivity = — -
True Positives + False Negatives

Predicted

B| Yes TP FN
T
<
Gentle Reminder:
The False Positive Rate tells True Positive False
you the percentage of actual Von No  Negative |
Negatives that were incorrectly = ‘~.,) ;
classified. In this case, it’s the S Yes TP FN |«
known people without Heart E‘ No FP N
Disease who were incorrectly True
classified.

False Positive--™ r. Negative

- False Positives
False Positive Rate = — -
False Positives + True Negatives

Predicted

s No Okay, now we've got some
fancy terminology that we can
= use to summarize individual
i i i ?
§ | No FP l ™ I confusion matrices. BAM?

To be honest, even with the Silly Song, | find it
hard to remember all of this fancy terminology and
so don’t use it that much on its own. However, it's

a stepping stone to something that | use all the

time and find super useful: ROC and Precision
Recall Graphs, so let’s learn about those!

=

NOTE: Remember, Specificity is the proportion of

actual Negatives that were correctly classified, thus... B AM ' ' '

EER
False Positive Rate = 1 - Specificity
«and...
Specificity = 1 - False Positive Rate




ROC: Main Ideas Part 1

whether or not someone loves Troll 2, and we mentioned
that usually the classification threshold is 50%... A
...which means that if the
: predicted probability is >

@ In Chapter 6, we used Logistic Regression to predict

1= Loves Troll 2 = 50%, then we classify
«---- them as someone who
Probability Loves Troll 2...
that someone . -
loves Troll 2 ..and if the probability
is = 50%, then we
A4 erevnenn  Classify them as
_ DoesNot | o b P someone who Does
Love Troll 2 - - - . Not Love Troll 2.
Popcorn (g)
Now, using a classification ® and create this
threshold of 50%, we can Confusion Matrix. *"*+-.
classify the each person..= .,
1 = Loves Troll 2 = ¢ ‘Y
that someone Yes No
loves Troll 2 =
8 Yes 4 1
0
v No 1
0= Does Not | = 3 5
~ Love Troll 2 . < .
NOTE: This False Negative «"
comes from someone we know

Loves Troll 2, but has a predicted

NOTE: This False Positive probability of 0.27.

comes from someone we
know Does Not Love Troll 2,
but has a predicted

probability of 0.94. 1 o --

o
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ROC: Main Ideas Part 2

Now let’s talk about what happens when we For example, if it was
use a different classification threshold for super important to
deciding if someone Loves Troll 2 or not.

correctly classify
every single person

; who Loves Troll 2,
| = boves Troll 2 & OO we could set the
' @, threshold to 0.01.

Probability ‘ »

that someone

loves Troll 2 /_,‘/’ e
M g o
0= Does Not — <

Love Troll 2

] L| L L}
Popcorn (g)

NOTE: If the idea of using a classification threshold other than 0.5 is
blowing your mind, imagine we're trying to classify people with the Ebola
virus. In this case, it’s absolutely essential that we correctly identify every
single person with the virus to minimize the risk of an outbreak. And that
means lowering the threshold, even if it results in more False Positives.

When the classification
threshold is 0.01, we
correctly classify everyone
.se=2y3e Who Loves Troll 2...

1= Loves Troll 2 =

Probability
that someone
loves Troll 2
v

0= Does Not |
~ Love Troll 2

...and that means
there are 0 False
Negati\{es. 5

|
Popcorn (g)

Yes 5

Actual

No 2

...but we also increase the number of -***
False Positives to 2 because these two ‘
people we know Do Not Love Troll 2 are
now predicted to Love Troll 2.
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ROC: Main Ideas Part 3

On the other hand, if it was super important to
correctly classify everyone who Does Not Love Troll
2, we could set the classification threshold to 0.95...

.
¥
.
D
.
.
»
¥
o
-

1 = Loves Troll 2
Probability
that someone
loves Troll 2
A4
0= Does Not
~ Love Troll 2
] | | | | |
Popcorn (g)
Gentle Reminder:
True Positive False
: %, | Yes No  Negative .
. B Yes > 1P FN |«
...and now we would have 0 False il Mo FP N True
Positives because all of the people False Positive-'« ¥.. Negative
that we know Do Not Love Troll 2 : ;
would be correctly classified...
—\..but now we would have 2
False Negatives because’,
g Lovesiinllia g | c ~  two people that we know %
Love Troll 2 would now be %
Probability " incorrectly classifiedas 1
that someone people who Do Not Love :
loves Troll 2 Troll 2... H
A4
0~ Does Not _ ...arjd we would er?d up
= Love Troll 2 with this Confusion
T T T 1 ~** Matrix.
Popcorn (g) s
5
|
»

Yes No
Yes 3 2
No 0 4

Actual
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ROC: Main Ideas Part 4

We could also set the classification .
; ...and that would give us
threshold to 0, and classify everyone s - L
this Confusion Matrix.
as someone who Loves Troll 2... f

1 = Loves Troll 2

4 Yes No
Probability % Yes 5 0
that someone
loves Troll 2 < L 4 0
A\ 4
0= Does Not
~ Love Troll 2

|
Popcorn (g)

Or, we could set the classification threshold to
1 and classify everyone as some:

one who Does .
Not Love Troll 2.. ...and that would give us

this Confusion Matrix.
3
1 = Loves Troll 2 -h: h
Yes No
Probability Té Yes 0 5
that someone
loves Troll 2 Z Ha 2 *
A4
_ DoesNot |
~ Love Troll 2

Popcorn (g)

Hey Norm, have you
actually watched
Troll 22
| wish | could say
no”, but I've seen
it twice!
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ROC: Main Ideas Part 5

Ultimately, we can try any classification
threshold from 0 to 1...

1 = Loves Troll 2 =
Probability
that someone
loves Troll 2
\ 4
_  Does Not |
0= | ovetrol2 1@
| | |
Popcorn (g)
Yes No Yes No
E Yes 5 0 g Yes 5 0
< No 4 0 < No 2 2
Threshold = 0 Threshold = 0.0645
Yes No Yes No
g Yes 5 0 g Yes 5 0
< No 3 1 < No 1 3

Threshold = 0.007

Threshold = 0.195

Yes No Yes No
T Yes 4 1 T VYes 3 2
g No il 3 g No 1 3

Threshold = 0.5

Threshold = 0.87

Yes No Yes No
T Yes 3 2 B Yes 2 3
g No 0 4 E No 0 4

Threshold = 0.95

Threshold = 0.965

Yes No Yes No

g Yes 1 4 E Yes 0 5
< No 0 4 < No 0 4
Threshold = 0.975 Threshold = 1

...and when we do, we end
up with 10 different
Confusion Matrices that we
can choose from. (NOTE:
The threshold under each
Confusion Matrix is just
one of many that will result
in the exact same
Confusion Matrix).

v
UGH!!! Trying to find the ideal
classification threshold among
all of these technicolor
Confusion Matrices is tedious
and annoying. Wouldn't it be
awesome if we could
consolidate them into one easy-
to-interpret graph?

YES!!!

Well, we're in luck because
that's what ROC graphs dol!!
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ROC: Main Ideas Part 6
RC stands for Receiver Operatin

@ ROC graphs are super helpful :
when we need to identify a good Characteristic, and the name comes from the

classification threshold because % graphs drawn during World War Il that summarized £

ttr? ey r? ulgmar:ze ho;v' Wf" eachf v how well radar operators correctly identified _#*
1RSI peNC e OIS airplanes in radar signals.

the True Positive Rate and the
False Positive Rate.

/J

@Each gray dot on the ROC

graph tells us the True .,

Positive Rate and the '-,‘
False Positive Rate for a

specific classification

threshold. v [ @
1 O i Ataglance, we can
P Y s i look at the top row of
; " points and tell that the

The higher the True classification threshold
@ dot is along the Positive that resulted in the
y-axis, the higher Rate point on the left side
the percentage of (or performed better than
actual Positives  Sensitivity

the others because
were correctly *. or Recall) they all have the same

classified... True Positive Rate,
ki g but the point on the
0 '-“ left has a lower False
P Positive Rate.
6 False Positive Rate | H
A (or 1 - Specificity) :
@ ...and the further to the left The di;gonal Jine
along the x-axis, the lower @ shows where the

the percentage of actual True Positive Rate =

Negathues it wor False Positive Rate.
incorrectly classified.

Now that we understand the
main ideas behind ROC graphs,

let’s dive into the details!!!
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Gentle Reminder: 1
True Positive False
No | Negative |

'x. Yes

T ves >TP | AN €
3 No FP TN True

"--Negative

<
False Positive A

ROC: Details Part 1

To get a better sense of how an

@ ROC graph works, let’s draw one
from start to finish. We’ll start by
using a classification threshold, 1,

that classifies everyone as someone
" who Does Not Love Troll 2...

...and when the

classification threshold

is set to 1, we end up

1 = Loves Troll 2 k
Probability
that someone i
loves Troll 2 with this Confusion .,
Matrix.
v i
_ Does Not | : :
T ] T 1 :
Popcorn (g) Yes No ‘_
g Yes 0 5
Using the values in the Confusion = 0 4
Matrix, we can calculate the True Threshold = 1
Positive Rate...
True Positive Rate = True Positne -
True Positives + False Negatives
=005=0
S g ...and the False
e Positive Rate...
False Positive Rate = F_allse Pasiives -
False Positives + True Negatives
i)
0+4 .

and then we can
)

plot that point, (0, 0)
: on the ROC graph. 3

True Positive
Rate H
(or Sensitivity| *
orRecall) |

\ 4
0__(? <
é False Positive Rate
(or 1 - Specificity)
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ROC: Details Part 2

Gentle Reminder:

True Positive False
E No | Negative |

%, Yes
e >T1p | N |«
No FP TN True
k. Negative

False Positive--"'

Actual

@ Now let’s lower the

classification threshold
Y
1 = Loves Troll 2
Probability
that someone
loves Troll 2
A4
Does Not . .

: someone who Loves Troll 2...
‘.."-__‘--.,‘

to 0.975...
= Love Troll 2

...and everyone else is
classified as someone

“*eniae= who Does Not Love
Troll 2...

...and that gives us
this Confusion .,

at

.
.
.t
ot

.

L] ]
Popcorn (g)

Positive Rate...

...which is just enough to

Using the values in the Confusion
Matrix, we can calculate the True

True Positives

: classify one person as
True Positive Rate =

=1—=0_2
+4 -

—_

True Positives + False Negatives

Matrix. 3
| L} 2,
Yes No
= L

:__5 Yes 1 4

& No 0 4

Threshold = 0.975

...and the False

Positive Rate...
False Positives
False Positives + True Negatives

@

False Positive Rate =

1 .-'. = L =0
0+4 .
s ...and then we can
H e plot that point, (0, 0.2),
: on the ROC graph... ‘.-"

True Positive|
Rate :

(or Sensitivity
or Recall)

...and the new point is above the
first point, showing that the new
threshold increases the

proportion of actual Positives

I
1 that were correctly classified. BAMI!
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Gentle Reminder:

ROC: Details Part 3 [ FI-........ ~J08
Now let’s lower the ‘ s Yes  No  Negative |
‘ Yes »TP | FN |«
s L. True

classification threshold
t0 0.965... o
-..which is just enough to False Positive: ¥.. Negative

classify 2 people as

Actual

.
o
o

: people who Love Troll 2..
! B
1 =Loves Troll 2 -
...and everyone else is
. . classified as someone
Probability *trasan who Does Not Love
that someone e Troll 2
loves Troll 2 '.,.--" roll ...
N ...and that gives us
o Does Not this Confusion
~ Love Troll 2 Matrix. -
| L] ] | .
FeRGomitg) Predicted :
Yes No ‘.:
Using the values in the Confusion g Yes 2 3
< No 0 4

Matrix, we can calculate the True
Positive Rate...
Threshold = 0.965

True Positives
True Positives + False Negatives

True Positive Rate =

= 22_3 =0.4
* : ...and the False
: Positive Rate...
False Positives

False Positives + True Negatives

False Positive Rate =

= -0
B 0+4 .
H ...and then we can
. : plot that point, (0, 0.4),
True Positive| : on the ROC graph...
Rate Y
(or Sensitivity s .
or Recall) 0 . Lt
O T ...and the new point is above the
first two points, showing that the
0“(? | new threshold increases the
I Faiso Positive Rate | proportion of actual Positives
0 (or 1 - Specificity) 1 that were correctly classified.
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classifications (in this example, that means classifying a person as
someone who Loves Troll 2), we calculate the True Positive Rate
and False Positive Rate until everyone is classified as Positive.

ROC: Details Part 4
@ Likewise, for each threshold that increases the number of Positive

Threshold =0

©
3 .
2 o 0| 4] 14 0
Threshold = 0.95 :
True P. O
Positive
Rate O O
(or A
Sensitivity
or Recall)
.'. |

# False Positive Rate = 1 _
(or 1 - Specificity) : 1 % Threshold = 0.195

2
5
.

Predicted

Yes No
B Yes 3 | 2
§ No 1 | 3

Threshold = 0.87

b
¢y
Ly

NOTE: Although there are a lot of potential
thresholds between these two points, they all !
result in the same True Positive Rate and the

same False Positive Rate, so it doesn’t
matter which one we pick, we just have to
pick one of them.
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ROC: Details Part 5

After we finish plotting the points from
@ each possible Confusion Matrix, we
usually connect the dots...

True Positive
Rate
(or Sensitivity
or Recall)

o |
(') False Positive Rate |
(or 1 - Specificity)

Now, without having to sort through a huge
pile of Confusion Matrices, we can use the

...and add a diagonal line that tells

us when the True Positive Rate =
False Positive Rate.

ROC graph to pick a classification threshold.

If we want to avoid all False ...but if we can tolerate a few
Positives, but want to False Positives, we would

maximize the number of actual pick this threshold becauss it
Positives correctly classified, correctly classifies all of the

.

we would pick this threshold. . 7 actual Positives.

¥

True Positive
Rate
(or Sensitivity
or Recall)

B |
0 False Positive Rate .
(or 1 - Specificity)

BAM!!!

ROC graphs are great for
@ selecting an optimal
classification threshold for a
model. But what if we want to
compare how one model
performs vs. another? This is
where the AUC, which stands
for Area Under the Curve,
comes in handy. So read on!!!
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AUC: Main Ideas

Regression and Naive Bayes the individual ROC graphs,
models and tested them with the and when we only have two

same data, and we wanted to know models to compare, this is a

which model performed better. .+ pretty good option.

@ Now, imagine we created Logistic In theory, we could compare

asEEEng, .
. " o*
. T raanaast

A

Y
ROC for Logistic Regression ROC for Naive Bayes
1 1=
However, if we wanted to
True True compare a bunch of
Positive Positive models, this would be just
Rate Rate as tedious as comparing a
bunch of Confusion
Matrices.
B iy UGH!!

1
1 T
0 False Positive Rate 1

So, instead of comparing a bunch of ROC
graphs, one simple way to summarize
them is to calculate and compare the AUC:
the Area Under each Curve.

In this case, the AUC for /.and the AUC for
Logistic Regression is 0.9...: Naive Bayes is 0.85..7

...and because Logistic

_-: Regression has a larger
19 L i AUC, we can tell that,

¥ . overal, Logistic Regression

3 performs better than Naive
True True o Bayes with these data.

Positive Positive
Rate Rate
BAM!!!
0 o+®

1
T T
0 False Positive Rate 1
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How do you calculate the AUC? .-+

of
o

My favorite way is to get a computer to do it...

AUC = 0.85
BAM!I!!

...but if you want to do it by hand, you simply divide the 0.500
area into a bunch of rectangles and triangles and add 0.200
., the areas of each shape together. 0.100
N 0.025
: i +0.025
AUC = Total Area = 0.850
Y
B Area==—0.25x0.2 = 0.025
v
Area =% 0.25x0.2 = 0.025

1=

0.8+

0.6=
True

Positive

Rate
0‘4 -

0.2=

0=

Area=0.5x1=0.5

| B T T
o 025 0.5 0.75

Area=0.25x0.4=0.1 "-_False Positive Rate

)
)

Area =0.25x0.8=0.2

g
o
.
.
.
o

.
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““BUT WAITI! ™
THERE’S MORE!!!/




Precision Recall Graphs: Main Ideas Part 1

An ROC graph uses the False Positive Rate on the x-axis, and

@ this is fine when the data are balanced, which in this case means
there are similar numbers of people who Love Troll 2 and who
Do Not Love Troll 2.

1 i
1= = Loves Troll 2
. _ Does Not
Pmﬁ‘it:'"ty Love Troll 2 True
Positive!
someone Rate
loves Troll
2
Y
0= 0
L L] L] ] 1 l
Popcorn (g) o0 False Positive Rate 1
However, when the data are imbalanced, and we have way more
people who Do Not Love Troll 2 (which wouldn’t be surprising
since it consistently wins “worst movie ever” awards)... ‘\
i : D=} ...then the ROC
B : Predicted ~ graphis hard to
Probability .: mterpret because the
So:::éne : Yes ~ No False Positive Rate
loves Troll : Yes 3 0 barely budges above
2 v T ] 0 before we have a
v ° 200 100% True Positive
0= Threshold = 0.5 Rate.
] | | | |
Popcorn (g)
1= s In other words, the ROC
" graph makes any model
o that simply predicts No
100% of the time look
True &
Positive really good.
Rate R ;
The good news is that we
have Precision Recall
graphs that attempt to
0 ,  deal with this problem.
T T ils!l!
o False Positive Rate 4 Read on for detailsl!
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Precision Recall Graphs: Main Ideas Part 2

A Precision Recall graph simply replaces the False Positive
Rate on the x-axis with Precision and renames the y-axis

Recall since Recall is the same thing as the True Positive Rate.

With Precision on the x-
axis, good classification
Probability thresholds are closer to the
that right side, and now we can
someone clearly see a bend where the
loves Troll 2 classification thresholds
Y
0=

start giving us a lot of False
Positives. &

1 =4

o Recall

True o (or True

Positive o Positive
Rate ot Rate

o or
4 Sensitivity)
oK

o

1 Uy

1
T
o False Positive Rate

T
1 0 Precision 1
@ The reason Precision works better than the False

Positive Rate when the data are highly imbalanced
is that Precision does not include the number of
True Negatives.

o True Positives

Precision = —_ —_
True Positives + False Positives
4

Gentle Reminder:

True Positive I False

“, | Yes  No Negative | v, Yes
g Y PP | PN € T Yes 3
° 7]
< No FP TN Triie < No 1
False Positive--« - Negative Threshold = 0.5




p Hey Norm, now that we s
understand how to summarize
how well a model performs using
Confusion Matrices and ROC

graphs, what should we learn
about next? "

Now we should learn about something
called Regularization, which pretty
much makes every machine learning
method work better.
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Chapter 09

Preventing
Overfitting with

Regularization!!!




Regularization: Main Ideas

The Problem: The fancier and more flexible
a machine learning method is, the easier it
is to overfit the Training Data.

In other words, this ...but the predictions
squiggle might fit the made with New Data
: are terrible.w

Training Data really well..=

.
.
K

N Using technical jargon,
< we would say that the
squiggle has low Bias
because it fits the

Training Data well, but

high Variance because
it does a bad job with

New Data.

L
.

+

pasmsEEEEEma,

.
.
.
.
"

v

Shoe Size

Shoe Size

A Solution: One very common way to deal with overfitting the Training

@ Data is to use a collection of techniques called Regularization. Essentially,
Regularization reduces how sensitive the model is to the Training Data.
...but now it makes

In this case, if we regularized the
squiggle, then it would not fit the better predictions with
Training Data as well as it did before... .New Data.
0

| o ,®
Height o Height

Shoe Size

Shoe Size

Cool! Now let’s
learn about Ridge

Using technical jargon, we would say that
Regularization.

Regularization increases Bias a little bit, but in ‘
return, we get a big decrease in Variance.

BAM!!
NOTE: In this chapter, we’ll learn about the two main types of
Regularization, Ridge and Lasso, in the context of Linear

Regression, but they can be used with almost any machine
learning algorithm to improve performance.




Ridge/Squared/L2 Regularization:

Details Part 1

@Le‘c’s imagine we measured

the Height and Weight of 5
different people...
Height

" Weight
@ ...and Testing Data.

Height

L z T
Weight

...however, because the
slope of the line is so
steep, it does a bad job

with the Testing Data. -,

.

®

...and then we split
those data into
Training Data...

4

'l

.

:

i e
¥
4

10

®

wnmes®

] |
Weight

Then we fit a line to the Training Data

that minimized the Sum of the Squared

Residuals (SSR). Because we only have

2 points in the Training Data, the line fits
it perfectly, and the SSR = 0...

Height

®

= i
o
st O
2 o

:
;
;
¥
.
;

| L]
Weight

In contrast, after applying Ridge
Regularization, also called
Squared or L2 Regularization,

we get this new line...

(0]
...and as you can see, the
new line doesn’t fit the
Training Data perfectly, but
it does better with the

Testing Data. Read on to
learn how it does this.

4
g o

Weight




Ridge/Squared/L2 Regularization:

Details Part 2
In contrast, when we use

When we normally fit a line to Training Data, e Ridge Regularization to
we want to find the y-axis intercept..: optimize parameters, we

: : simultaneously minimize the
SSR and a penalty that's

1 :: ...and the slope that :
o proportional to the square
minimize the SSR. of the slope...
¥ v

. SSR + A x slope?

T N T *
Weight 1 ...where the Greek
Height character A, lambda,
- 3 is a positive number
To get a better idea of how 1 i that determines how
the Ridge Penalty works, **==20 strong an effect Ridge
let’s plug in some numbers. Regularization has
We’'ll start with the line that - Weight . on the new line.

fits the Training Data
perfectly... i

Now, if we're
: using Ridge
...and, we end up

Regularization, A
: we want to with 1.69 as the
: minimize this score for the line
Py equa‘tion. that fits the
Y Training Data ’
A Height = 0.4 + 1.3 x Weight perfectly.
: T " T .4 suesseneay
Weight SSR +Axslope? =0 +1x1.32i=1.69:
s A 4 v, A L
.".. Because the line fits the
Training Data perfectly, ", &
---------- the SSR=0... :
: ...and since the

slope is 1.3, we
just plug that in...

...and we’ll talk more about A

(fambda) later, but for now,
let’s just setA =1...



Ridge/Squared/L2 Regularization:

Details Part 3

Now let’s calculate the Ridge Score for ...so we plug in the SSR, 0.4,
the new line that doesn't fit the Training the value for A (flambda), which

Data as well. It has an SSR = 0.4... for still is 1, and the slope, 0.8,
~

o into the Ridge Penalty.
1 b ‘ And when we
B 24 do the math,
| v oy we get 0.76.
, Height = 1.2 + 0.6 x Weight SOn %
Height ot % :
- » A | 5
SSR + A x slope2 = 0.4 + 1 x0.62§=0.76§ E
Pesansnun -
" Weight
Thus, the Ridge Score for
the line that fit the Training ...and the Ridge Score for the
Data perfectly is 1.69... new line that had a smaller slope
] ..." and didn’t fit the Training Data as
v well is 0.76...
1.69 .
- K ...and because we want to pick the
= 0.76 line that minimizes the Ridge

Score, we pick the new line.

Height Now, even though the new line doesn’t
d fit the Training Data perfectly, it does a
better job with the Testing Data. In

other words, by increasing the Bias a
a little, we decreased the Variance a lot.

L L]
Weight

BAM!!!

However, you may
be wondering how
we found the new
line, and that
means it’s time to
talk a little bit more
about A (lambda).

" Weight ! v

SSR + A x slope?
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Ridge/Squared/L2 Regularization:

Details Part 4

@ When A = 0\
K ...then the whole
Ridge Penalty is
=SSR + 0 x slope?

« also 0)
-SSR+0 €

...and that means we’ll
=SSR only minimize the SSR,
L. soitsas if we're not

' using Ridge
Regularization...

However, as we just saw, when A =1, "
= —
we get a new line that has a smaller

slope than when we only minimized

Y ...and, as a result, the new line, derived
from Ridge Regularization, is no different

from a line that minimizes the SSR.
SSR + A x slope?

.,
tean

the SSR.
Whenwe .7 .
increase A to 2, Height
the slope gets
even smaller... "
Height
L] L]
- Weight
" Weight -
...and when we increase ...and as we continue to increase A, the slope
Ato 3, the slope gets @ .+ gets closer and closer to 0 and the y-axis
even smaller... sintercept becomes the average Height in the
2 : Training Dataset (1.8). In other words, Weight
H ¢ no longer plays a significant role in making
- : :  predictions. Instead, we just use the mean
: o) 1 Height.
1 ) ", #)
1 A=3 IR
Height
Height So, how do we
- 0O pick a good
y O value for A?
L] L] L |
Weight

" Weight - '

169



Ridge/Squared/L2 Regularization:

Details Part 5

Unfortunately, there’s no good way to know in advance what the best
value for A will be, so we just pick a bunch of potential values, including BAM'"

0, and see how well each one performs using Cross Validation.

A=0 €VS8—>A=1€-V8—>A=2

| | L] | | | L]
Weight Weight Weight

So far, our example has been
super simple. Since we only used

Weight to predict Height..:

i, ...the Ridge Penalty
. contained only a
o single parameter, the
slope.

Height = intercept + slope x Weight |

o
o

SSR + A x slope? €

" Weight ’
However, if we had a more complicated model that used
Weight, Shoe Size, and Age to predict Height, and we
would have slopes for each variable in the model...
NOTE: The Ridge . -
P:nalty neverti)ncludes Height = intercept + slopew x Weight + slopes
the intercept because ;
the intercept doesn’t - e S ke
directly affect how any ...and the Ridge Penalty would include the sum of the
of the vangbles (Weight, squares of the 3 slopes associated with those variables.
Shoe Size, or Age) LT
predict Height. v A ..... A

SSR + A x (slopew? + slopes? + slopea?)
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Ridge/Squared/L2 Regularization:

Details Part 6

When we apply Ridge
Regularization to models
with multiple parameters,

like this one..:

...it will shrink the parameters,
slopew, slopes, and slopea, but not equally.

+
+ = .
.

3
.

4 [ ¥ |
Height = intercept + slopew x Weight + slopes x Shoe Size + slopea x Airspeed of a Swallow
k.
For example, if Weight and Shoe Size A "'.
are both useful for predicting Height, ...compared to the slope
but Airspeed of a Swallow is not, then associated with the Airspeed of

their slopes, slopew and slopes, will
shrink a little bit...

a Swallow, slopea, which will
shrink a lot.

‘.
So, what causes this difference? When a variable, like Airspeed
of a Swallow, is useless for making predictions, shrinking its
parameter, slope,, a lot will shrink the Ridge Penalty a lot.=

X« ...without
SSR + A x (slopew? + slopes? + slopes?) mcregglgg e

0 +
¥ s
"™, o
LN .

“ay
taa,,
CErmamssmusns wams

In contrast, if we shrink the slopes associated with Weight and Shoe
Size, which are both useful for making predictions, then the Ridge
Penalty would shrink, but the SSR would increase a lot.

BAM!!!

Now that we understand how the Ridge
Penalty works, let’s answer 2 of the most
frequently asked questions about it. Then

we’ll learn about another type of
Regularization called Lasso. Get pumped!!!
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Ridge/Squared/L2 Regularization: FAQ

All of the examples showed how As long as you try setting A to 0, when

increasing A, and thus decreasing the you’re searching for the best value for

slope, made things better, but what if we A, in theory, Ridge Regularization can
need to increase the slope? Can Ridge never perform worse than simply

Regularization ever make things worse? finding the line that minimizes the SSR.

How do we find the optimal parameters
using Ridge Regularization?

When we only have one slope to optimize, one way to find the line
that minimizes the SSR + the Ridge Penalty is to use Gradient
Descent. In this case, we want to find the optimal y-axis intercept
and slope, so we take the derivative with respect to the intercept...

PETTLTT . .t
LT i
Teamsaansnst

e

d (SSR + A x slope?)

d intercept
= -2 x (Height - (intercept + slope x Weight) )

d
d slope

= -2 x Weight( Height - (intercept + slope x Weight) )

(SSR + A x slope?)

+2 x A x slope

When we plug those derivatives into Gradient Descent and set
the Learning Rate to 0.01, we get the equations for the new lines.

‘/_\/

Unfortunately, for more complicated models, or for Lasso Regularization, or for
combinations of the two, we have to use a different approach that’s outside of the
scope of this book. However, interested readers can learn more by following this link:

https://web.stanford.edu/~hastie/TALKS/nips2005.pdf

One of my favorite bits of trivia about Troll 2 is
that a bunch of people who thought they were
auditioning to be extras were all cast in lead
roles.

Agreed! However, I'm
excited that we'’re going
to learn about Lasso
Regularization next!!!




Lasso/Absolute Value/L1 Regularization:

Details Part 1

Lasso Regularization, also called Absolute Value
or L1 Regularization, replaces the square that we

use in the Ridge Penalty with the absolute value.

For example, let's compare
the Lasso scores for the

L In contrast, in the Lasso black line, which fits the
In the Ridge Penalty, we Penalty, we take the Training Data perfectly...
square the parameter. parameter’s absolute value. _:’
. 5’... ‘i
v v A N .
SSR+Axslopez  \Y§, SSR+Ax|slope| HE}Ight-._ 04+ 1.3 x Weight
For the black line, which )
@ .- fits the Training Data Height
" perfectly, the SSR is 0... -
. 1 Height = 1.2 + 0.6 x Weight
: = ...for now we'll 3 A
A\ o letA=1... — JH
Height = 0.4 + 1.3 x Weight  : : \ Weight v
5 i 7 ...and for the green line,
g ...and the which doesn’t fit the
% absolute value Training Data as well.

of the slope is

o
1.3
. J...
.
Ui
.
.
o
-
.
0

Jrmnnnnny " 2 i
SSR+Ax|slope| =0 +1x1.3:=13"! < ...which give us 1.3
% e H ‘=== as the Lasso score
for the black line.

In contrast, the green line
# hasan8SR=04... .. sowe plugin 0.4 for
\J the SSR, 1 for A, and 0.6
Height = 1.2 + 0.6 x Weight for the slope and get 1.0
: for the Lasso score.

{ And because 1 < 1.3,
we would pick the

. green line.
%, Bam.
i
SSR + A x[slope| = 0.4 + 1x0.6:=1.0
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Lasso/Absolute Value/L1 Regularization:
Details Part 2

The big difference between Ridge and Lasso Regularization is that Ridge
Regularization can only shrink the parameters to be asymptotically close to

0. In contrast, Lasso Regularization can shrink parameters all the way to 0.

For example, if we applied Ridge and
Lasso Regularization, separately, to
this fancy model that predicted Height

using Weight, Shoe Size, and the
Airspeed of a Swallow...

A
Height = intercept + slopew x Weight + slopes x Shoe Size + slopea x Airspeed of a Swallow
...then regardless of how useless the In contrast, if Airspeed of a Swallow was totally
variable Airspeed of a Swallow is for useless, then Lasso Regularization can make
making predictions, Ridge slopea = 0, resulting in a simpler model that no
Regularization will never get slopea = 0. longer includes Airspeed of a Swallow.

LS
e

o,
0
e

oo
Height = intercept + slopew x Weight + slopes x Shoe Size + sle

o
-

Height = intercept + slopew x Weight + slopes x Shoe Size &

@

Thus, Lasso Regularization can exclude useless variables from
the model and, in general, tends to perform well when we need
to remove a lot of useless variables from a model.

In contrast, Ridge Regularization tends to perform better
when most of the variables are useful.

BAM!!!



_ A NOTE: Ridge and Lasso <

y Regularization are frequently /
“»combined to get the best of :
\ both worlds. |

"> DOUBLE BAM!! |



Ridge vs. Lasso Regularization: Details Part 1

The critical thing to know about Ridge vs. Lasso Regularization is that Ridge works
better when most of the variables are useful and Lasso works better when a lot of

the variables are useless, and Ridge and Lasso can be combined to get the best of
both worlds. That said, people frequently ask why only Lasso can set parameter

values (e.g, the slope) to 0 and Ridge cannot. What follows is an illustration of this
difference, so if you're interested, read on!!!

As always, we’ll start with a super
simple dataset where we want to
use Weight to predict Height.

Height }
.
@
Now let’s fit a blue .
horizontal line to the data,
£ which is a terrible fit, but TP
£ we'llimprove it in a bit... ~, g
...and let’s calculate the Ridge
=4 Score, SSR + A x slope?, with
. H A =0. In other words, since A =
Height| = 2
g v @ 0, the Ridge Score will be the
1 0O same as the SSR...\
— ¥ ...and now let's plot the Ridge
Weight A Y Score and the corresponding
slope of the blue horizontal
Height s '-.a : line, 0, on a graph that has
J o T SSR + A x slope2 on the y-axis
: and slope on the x-axis.
L] L] 1 “
Weight
15 |
SSR B
+ 107 O
A x slope?
5 4
0 04 08

Slope Values
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Ridge vs. Lasso Regularization: Details Part 2

Now let’s increase the slope to 0.2
and plot the SSR + A x slope2,

again with A =0...

. Ultimately, we can plot the
SSR + A x slope?, with A =0, as
a function of the slope, and we
. . . get this blue curve.
Weight * e
20
SSR : 1
+ 18
A x slope? |
10 - '

5 @v
O AN

< "0 ¥ 04 08 ¥ : L

...and then increase the .+ Slope Values i

slopeto 0.4 and plot the zé'éaﬁi":, i

SSR.+ A x slope2, with A = 0 for when
. with A =0... ’\ the slope is 0.8.
...and plot the

SSR + A x slope2,
with A = 0 for when
the slope is 0.6...
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Ridge vs. Lasso Regularization: Details Part 3
Now that we have this blue curve, we can see
that the value for the slope that minimizes the ...which corresponds to
Ridge Score is just over 0.4... this blue line.

20- i
SSR
+ 154
A x slope?
10 1
5 il | |
Weight
"o 0.4 0.8
Slope Values
Now, just like before, let’s
calculate the SSR + A x slope? 20
for a bunch of different slopes,
& only this time, let A = 10. SSR
1: + 15
H A x slope?
10
5 =l
We get this orange
curve, where we “sseeeeaesa™n T gl 08
' Weight ’ see that the slope Slope Values
that minimizes the
Ridge Score is just
under 0.4...
...which " ; S
corresponds this Bldge R(_egressnon makes me
orange line. think of being at the top of a cold
mountain. Brrr!l And Lasso

Regression makes me think
. about cowboys. Giddy up!
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Ridge vs. Lasso Regularization: Details Part 4

When we compare the blue

line, which has the optimal
+ slope when A = Oj
...to the orange line, which has

the optimal slope when A = 10, we
_. see that A = 10, which increases
~the Ridge Penalty, results in a

+ smaller slope.

¥. o
Creannet’

Height
E ; A=10
' Weight ' ' Likewise, we can see that when A = 10,
the lowest point on the orange curve
corresponds to a slope value closer to 0...
20

SSR " ...than on the
+ 15- blue curve,
A x slope? when A = 0.

10+

5 4
0.4 0.8

6 :
Slope Values

Now we calculate the SSR + A x slope2 for a

@ bunch of different slopes with A = 20...
sf
4 ol 20 -

4 ...and we get this
green curve, and
again, we see that
the lowest point
corresponds to a
slope that'’s closer 10
. to 0. SSR
+ 51
A x slope?
0.4

0
Slope¥alues
179

15+




Ridge vs. Lasso Regularization: Details Part 5

Lastly, we calculate the SSR + A x slope? for
a bunch of different slopes with A = 4

02
o &7
i ...and we get this purple curve, and again,
| 4 we see that the lowest point corresponds to
a slope that’s closer to, but not quite, 0.
20
T 7 ¥ 1 SSR
Weight + 157
A x slope?
10-
To summarize what we've seen so far: 51
1) When we calculate SSR + A x slope?,
we get a nice curve for different values !

0 0.4 0.8
for the slope. Slope Values
2) When we increase A, the lowest point
in the curve corresponds to a slope
value closer to 0, but not quite 0.

BAM!!!

Now let’s do the same thing using the
Lasso Penalty, and calculate
SSR + A x [slope|!!!

@ When we calculate the Lasso score 20 -

for a bunch of different values for the
slope and let A = 0, we get this blue SSR

curve, just like before, because when + 151

A =0, the penalty goes away and A x [slope]
we're left with the SSR. And, just like

before, we see the lowest point in the 101

blue curve corresponds to a slope g

value that’s just over 0.4. 5 ]

Slope Values
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Ridge vs. Lasso Regularization: Details Part 6

Now when we calculate the SSR + A x |slope| and let
A =10 for a bunch of different values for the slope,
we get this orange shape, and the lowest point
corresponds to a slope just lower than 0.4.

20 -
S§R 154 However, unlike before, this
Ax slope] orange shape has a glight
kink when the slope is 0.
101
o | o4 o8 | .
Slope Values i
20
When we calculate the &
@ SSR + A x|slopeland let .+ SSR
A=20forabunchof . e oy
different values for the .~ Ax|slope]
slope, we get this green 104
shape with a kink where
the slope is 0 that’s now
more prominent. 54
When we calculate the SSR + A x [slope| g Slopeocalues 08
and let A = 40 for a bunch of different values
for the slope, we get this purple shape
£ with a kink where the
slope is 0, and now
20 that kink is also the
lowest point in the --and that means
SSR # shape... when A = 40, the
+ 154 .+ Slope of the
A x |slope] " optimal line is 0.
10+ T
{ o BAMII!
.' @ LL ]
5 h :
Height '-._ 0O

0 04 08 @“_Di

Slope Values
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Ridge vs. Lasso Regularization: Details Part 7
. In summary, when we increase the Ridge,
@ Squared, or L2 Penalty the optimal value for the

s

lope shifts toward 0, but we retain a nice parabola
shape, and the optimal slope is never 0 itself.

p NOTE: Even if we increase A all the way to
09 400, the Ridge Penalty gives us a smooth
red curve and the lowest point corresponds
S to a slope value slightly greater than 0
L 15- o a slope value slightly greater an.‘.
A x slope? i
it 20 - %
A =400 b
5. SSR :
+ 154 ;
A x slope2 H
0 0.4 08 101 o
Slope Values A
0 04 08
Val
In contrast, when we increase the Lasso, S Valuos
Absolute Value, or L1 Penalty, the optimal
value for the slope shifts toward 0, and
since we have a kink at 0, 0 ends up being
the optimal slope.
20 I R I I L E
SSR
BAM!!!
A x [slope|
|slope] et
10
5 =
7 Now let’s learn °

"0 04 08

% about Decision j
Slope Values

_Trees! _g*
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Chapter 10

Decision Trees!!!




Classification and Regression Trees:

Main Ideas

There are two types of Trees in machine learning:
trees for Classification and trees for Regression.

Classification Trees classify
people or things into two or more Tl 4l Loves Soda

discrete categories. This example »’ Yes
Classification Tree classifies A
people into two groups:

Age <125 Does Not
/\/ Love Troll 2
Yes
-..those who do not =-..., Does Not Loves Troll 2
love Troll 2... Love Troll 2 A
\/' ...and those who love Troll 2.

In contrast, Regression Trees try to
predict a continuous value. This example
Regression Tree tries to predict how

. Effective a drug will be...

PACY

*
Ot
o &

K

+

L]
.

e,

4:-., ..based on someone’s Age...
NO .'.._.1’

.
.
kY
.

4

0

No

100% Effective 50% Effective

In this chapter, we'll cover the Main Ideas behind
Classification Trees and Regression Trees and
describe the most commonly used methods to
build them. But first, it’s time for the dreaded...



Terminology Alert!!!

II! Decision Tree Lingo

The good news is that Decision
Trees are pretty simple, and there’s

not too much terminology.

The very top of the tree is called the
Root Node or just the Root.

This is called an Internal ..., i
Node or just a Node.

Does Not
U R Love Troll 2

.
»*
o
.
o
o

The arrow;vs are called
Branches. In this example, .
the Branches are labeled .
with Yes or No, but usually ., i

it’s assumed that if a

These are called Leaf
statement in a Node is True,

s W Nodesor just Leaves.
you go to the Left, and if it's
False, you go to the Right.

Now that we know the lingo, let's

learn about Classification Trees!!!

One thing that’s weird
about Decision Trees is
that they’re upside down!
The roots are on top, and

the leaves are on the
bottom! y

Maybe they’re just
growing on the other
side of the world from



Classification Trees



Classification Trees: Main Ideas

The Problem: We have a mixture of
discrete and continuous data..:

ot "
%

PO | 14
Loves Loves Loves ...that we want to use to predict if
Popcorn| Soda | 9% Troll2 Y., someone loves Troll 2, the 1990
-~ blockbuster movie that was neither
Yes Yes 7 No y:‘ about trolls nor a sequel.
Yes No 12 No
No Yes 18 Yes

Unfortunately, we can’t use Logistic Regression
with these data because when we plot Age vs.
No Yes 35 Yes

Loves Troll 2, we see that fitting an s-shaped
Yes Yes 38 Yes squiggle to the data would be a terrible idea: both
Yes No 50 No young and old people do not love Troll 2, with the
people who love Troll 2 in the middle. In this
No e 83 o example, an s-shaped squiggle will incorrectly
classify all of the older people. *

1= Loves Troll 2
A Solution: A -
Classification Tree, Probability

: that someone
which can handle all loves Troll 2
types of data, all types of
) relationships among the Does Not
independent variables (the 0= ove Troll 2
data we’re using to make

predictions, like Loves Soda
and Age), and all kinds of
relationships with the
dependent variable (the thing
we want to predict, which in
this case is Loves Troll 2).

Classification Trees are relatively easy
to interpret and use. If you meet a new BAM!!!
person and want to decide if they love
Troll 2 or not, you simply start at the top
and ask if they love Soda...

...and if they
...if they do, then ask <asses==*""" Rl ("""".-‘cdon't love Soda
if they're less than ™, ' to begin with,
12.5 years old... . Does Not they probably do
r\_/ y Yes \ Love Troll 2 not love Troll 2.
...ifthey are, then <, b
they probably do & LavceTrallz B3 ...if not, then they
not love Troll 2

probably love
\_//' Troll 2....
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Building a Classification Tree: Step-by-Step

@ Given this Training Dataset, we want to build a

Classification Tree that uses Loves Popcorn,

Loves Soda, and Age to predict whether or not
someone will love Troll 2.

The first thing we do is decide whether
4 Loves Popcorn, Loves Soda, or Age .
Loves Loves Aie Loves hould be th ti K at th .
Popcorn| Soda g Troll 2 should be the question we ask at the
very top of the tree. H
Yes Yes 7 No &
Yes No 12 No 200 (--“‘
No Yes 18 Yes
No Yes 35 Yes
Yes Yes 38 Yes
Yes No 50 No
No No 83 No
Y. B4

.
‘e, o
O -

*e +

Yo, o*

o ¢

To make that decision, we’ll start by looking
at how well Loves Popcorn predicts whether

or not someone loves Troll 2...

Loves Popcorn 1
Yes No
‘E'"

...by making a super
.+5+ simple tree that only
asks if someone loves
Popcorn and running
the data down it.

Loves Troll 2 Loves Troll 2
Yes No Yes No

For example, the first /_\ Lt.r.'.ang bectaluse

person in the Training Loves Loves T le?_ 0 "?” O\ée

Data loves Popcorn Popcorn Troll 2 roll 2, we'll puta
’ 1 under the word

so they go to the Leaf
on the left... *, YN'O

ore
ORETS
e "4n

Loves Popcorn

.
D
D
.
.

Loves Troll 2 %
Yes No 5
1
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Building a Classification Tree: Step-by-Step

The second person also loves
Popcorn, so they also go to the Leaf
on the left, and because they do not

love Troll 2, we increase No to 2.

Yes
Loves Loves
Popcorn Troll 2

Loves Troll 2

Loves Popcorn

Loves Troll 2
Yes No No Yes No
e N e 2 |

No Yes ."‘,‘ A A

No Yes | .’n.. ‘_.". "'..

Yes Yes | "
Yes No | ..."%
No No

Q The third person does not love
Popcorn, so they go to the Leaf

on the right, but they love Troll 2, . !

0

so we put a 1 under the word Yes.

Likewise, we run the remaining rows down
the tree, keeping track of whether or not

..-** @ach person loves Troll 2 or not.
.

.‘

7 Loves Popcorn B AM ! ! !
: No
W | oves Troll 2 Loves Troll 2 s ‘
Yes No Yes No : Loves Loves
E —_— : Soda Troll 2
1 3 2 1 t
5 Yes No ‘
No No
' Yes Yes
Then we do the . = |
same thing for 25 ;‘ *,
Loves Soda, ===

Loves Soda "._

Loves Troll 2 Loves Troll 2

No

Yes No
3 1 v



Building a Classification Tree: Step-by-Step

Now, looking at the |, essesessesssmssmrsemmenn,,
two little trees, one A SHemagy
for Loves Popcorn

and one for Loves

Soda...
...we see that Loves Troll 2 Loves Troll 2
these three ) No Yes
Leaves contain —_—
mixtures of

people who love
and do not love *suyy;
Troll 2.

v In contrast, this Leaf only
contains people who do
not love Troll 2.

TERMINOLOGY ALERTI!

Leaves that contain mixtures of
classifications are called Impure.

y

+
i
.

annnt®®

...it seems like Loves Soda does a better

Heacayed both Leaves in the job classifying who loves and does not
@ eteslreat esenalhi s love Troll 2, but it would be nice if we

and gnz one Llealf W the Loves could quantify the differences between
oda tree is Impure..: Loves Popcorn and Loves Soda.

The good news is that there are
several ways to quantify the
Impurity of Leaves and Trees.
One of the most popular methods is

called Gini Impurity, but there are
also fancy-sounding methods like )
Entropy and Information Gain. In theory, all of the methods give
similar results, so we’ll focus on Gini

Impurity since it’s very popular and |
think it’s the most straightforward.

Loves Popcorn

We'll start by calculating the Gini
Loves Troll 2 Loves Troll 2 Impurity to quantify the Impurity in
Yes No No the Legves for loves Popcorn.

-
.

1 3 -
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Building a Classification Tree: Step-by

To calculate the Gini Impurity
@ for Loves Popcorn, first we Loves Popcorn
calculate the Gini Impurity for
each individual Leaf. So, let’s
start by plugging the numbers Loves Troll 2
from the left Leaf into the No

equation for Gini Impurity.

3

Jge?

for a Leaf

Gini < S
@ Impurity = 1 - (the probabmty of “yes”)? - (the probability of “no”)2

For the Leaf on the o (The number for Yes ) ( The number for No \2
deii, Whienis pg Hie B S e total for the Leaf/ ~ \The total for the Leaf

numbers, Yes = 1, geanan
No =3, and Total—1 Mty

+ 3, into the equation ‘A + o 3 7 35 gessmsnsines
for Gini Impurity, we 1. ( ) _ ( ) 10375
get 0.375, 1+3 1+3/ tasnsnnind

o

. o)

. .
---------
............

For the Leaf on the
@ right, we get 0.444. Loves Popcort

Loves Troll 2
o Yes \[o}

2 1

Gini
Impurity =1 - (the probablllty of “yes”)2 - (the probability of “no”)2
i foraleaf ,

". '2 2 1 E 2:llllllllll=
=1_( ) ( ) i=0444
2+1 249, Leoman i

nn®




Building a Classification Tree: Step-by-Step

Now, because the ...and the Leaf on the right only
Leaf on the left has has 3, the Leaves do not represent
4 people in it... the same number of people.

So, to compensate for the
differences in the number
of people in each Leaf, the

- : total Gini Impurity for

s, Loves Troll 2 Loves Troll 2 & Loves Popcorn is the
Yes No Yes No [t Weighted Average of the

1 3 2 1 Ks two Leaf Impurities.

Loves Popcorn

Gini Impurity = 0.375 Gini Impurity = 0.444

‘ Total G."“: weighted average of Gini Impurities for the Leaves
Impurity

The weight for the FY : 5
left Leaf is the total i % Y ...and when we do the

number of people in H : math, we get 0.405. BAM!!
the Leaf, 4..2****,, 1 % ‘ . 5

o 4 3 Tinisissina =

TotalGmr 0.375 + 0.444 i =0.405

Impurity 4+3 4+3 Eesmeensrnapd

R e
o : : Trzantt "
....divided by the total : ...multiplied by the
number of people in «ue...e ' H associated Gini
i % Now we add to that the [ Impurity, 0.444...
: weight for the right Leaf,

the total number of
people in the Leaf, 3,
divided by to the total in
both Leaves, 7...

...then we multiply
that weight by its
associated Gini
Impurity, 0.375.
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Building a Classification Tree: Step-by

Now that we've calculated the
Gini Impurity for Loves rsvz;:**"* S| ©'°S Popcorn

Popcorn, 0.405... .

'ﬁ Loves Troll 2 Loves Troll 2
Gini Impurity for _

Yes No Yes No
Loves Popcorn ~ 1 3 2 1

to calculate the Gini Impurity w-«ceeeees S Eansana Y Loves Soda
for Loves Soda, 0.214. iy
.':‘ Loves Troll 2 Loves Troll 2
Gini Impurity for -0.214 Yes No Yes No

Loves Soda T 1 0 3

The lower Gini Impurity for Loves Soda, 0.214, confirms what we
@ suspected earlier, that Loves Soda does a better job classifying
people who love and do not love Troll 2. However, now that we’ve
quantified the difference, we no longer have to rely on intuition. Bam!

Now we need to calculate f However, because Age contains numeric data,
the Gini Impurity for Age. and not just Yes/No values, calculating the Gini

Impurity is a little more involved.

|4
Uoves Normally, the first thing we do is sort the
Age L2 rows by Age, from lowest to highest, but
in this case, the data were already
7 No sorted, so we can skip this step.
12 No
18 Yes The next thing we do is calculate the
35 Yes ave-tage Age for all adjacent rows.
38 | Yes %,
R A Loves
50 No R 9 Troll2
83 No '-_ ".‘ 7 No
%Y 12 N
3 o
!

8 Yes

.
)
.
.
.
.
.
.
Y

. 5 Yes
b |

0 No
3 No

1
3

36.5

38 Yes
5
8!
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Building a Classification Tree: Step-by-Step

Lastly, we calculate the Gini For example, the first average Age is
Impurity values for each 9.5, so we use 9.5 as the threshold for
" average Age. splitting the rows into 2 leaves...

o

A Loves
9 | Troll 2

.

devvone,
.,

i No."___‘.-.-- v
12 ""No Loves Troll 2 Loves Troll 2
18 Yos Yes No Yes No
26.5 3
35 Yes
36.5 3g Vos Gini Impuri}y =0.0 Gini impurity =05
: :
50 No : 5
e \ 4 | 4
83 No Total Gini _ (1 1\, o (6 \, ...and when we
Impurity 1+6/) 1 56 do the math, we
get 0.429
gessnnnssns - PRPTre U LLLLL LT (T . -_‘-
= 0429 i 4° S

Ultimately, we end up with a Gini Impurity
for each potential threshold for Age... -/N
: ...and then we identify the
thresholds with the lowest

Loves ‘
Age Troll 2 H Impurities, and because the
v candidate thresholds 15 and 44
7 No - : are tied for the lowest Impurity
.................. | ity = 0.429 X ) ’
l:l 12 No % G lmp ity sy 0.343, we can pick either one
T N » Gini Impurity = 0.343 4=*" . for the Root. In this case, we'll
: |:| .................. » Gini Impurity = 0.476 & pick 15. -,
: 35 Yes Ginil Impurt SuTe 7 .
: I:' 3é """" Yes """ » Gini Impurity = 0.47 » BAMI! -__-
P [4d] Cemeerpresseenns ++» Gini Impurity = 0.343 i
: 50 No o ) :
. l:I ------------------ » Gini Impurity = 0.429 :
83 No 3

.
------------

Loves Troll 2 Loves Troll 2
Yes No Yes No

0 P 3 2
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Building a Classification Tree: Step-by-Step

@ Now remember: our first goal was to JRTTTT 99
determine whether we should ask about o iR
Loves Popcorn, Loves Soda, or Age at &

the very top of the tree...  *ee......e="

...S0 we calculated the Gini
Impurities for each feature... Loves Popcorn

A Loves Troll 2 Loves Troll 2

Gini Impurity for 0.405 s No Yes [\ [¢]
Loves Popcorn™ ™ 1 3 2 1

Loves Soda

Loves Troll 2 Loves Troll 2

Gini Impurity — 0214 DEE No Yes No
for Loves Soda 3 1 0 3

Age <15

Loves Troll 2 Loves Troll 2

Gind Impurity =0.343 (S No Yes No
:  forAge< 15 —_— _—
0 2 K] 2

& gamreaa
ettt LT

» e

...and because Loves E)
Soda has the lowest
Gini Impurity, we’ll put

it at the top of the tree.

BAM!!!



Building a Classification Tree: Step-by-Step

With Loves Soda at the top of the ...and the 3 people who do not love
@ ) tree, the 4 people who love Soda, @ Sodea, all of whom do not love Troll
including 3 who love Troll 2 and 1 who 2, o to the Node on the right.

does not, go to the Node on the /eft...

Loves Loves Loves Loves
Popcorn Soda 9 Soda Troll 2
Yes No

No ........... NO.E
Yes Yes
Yes Yes
Yes Yes
) 'NoNo

Now, because the
Node on the left is

Impure, we can split

the 4 people in it Loves Troll 2 Loves Troll 2
based on Loves Yes No g Yes No
Popcorn or Age and 3 1 0 3
calculate the Gini -, >
Impurities. LT
Loves Popcorn
When we split the 4 people who
love Soda based on whether or Loves Troll 2 Loves Troll 2
not they love Popcorn, the Gini ==, S No Yes No

Impurity is 0.25.

1 1 2 0

o

.
.t

.

However, when we splitthe 4~ “-... Gini Impurity = 0.25
people based on Age < 12.5,
the Gini Impurity is 0.

Loves Loves Loves
Popcorn Soda Troll 2

.
.
)

Age <125

ErEsENEEEEEEEIEEERERREEEEEEEERERY

1 Y ] v
Loves Troll 2 Loves Troll 2 t 1 es@ 8 o
Yes No Yes No i No Yes365 35 Yes &
1 3 0 PoYes  Yes—— 38 Yes f

Gini Impurity = 0.0



Building a Classification Tree: Step-by-Step

splitting every person in the Training Data based on whether or
not they love Soda gave us the Jowest Gini Impurity. So, the 4
people who love Soda went to the /eft Node...

@ Now remember, earlier we put Loves Soda in the Root because

Loves = Loves Age Loves ...and the 3 people who
Popcorn  Soda Troll 2 do not love Soda, all of
Vs Yes ' whom do not love Troll
2, went to the Node on
1 the right.
i No Yes 18 Ves  §aene Loves Soda
: H :
i No Yes 35 Yes i H
P Yes Yes 38 Yes 1 v
T PP T PR PR T TR LOVES TI'0||2 LOVES TI’0||2
3 Yes No
0 3
A [
Now, because everyone in this Node does
In contrast, because the 4 * not love Troll 2, it becomes a Leaf, because
people who love Soda are there’s no point in splitting the people up
a mixture of people who into smaller groups.

do and do not love Troll 2,
we build simple trees with
them based on Loves

Popcorn and qu...

...and because Age < 12.5 resulted
in the lowest Gini Impurity, 0, we
Loves Popcorn

i add it to the tree.

And the new Nodes

: b &
Loves Troll 2 Loves Troll 2 3 ek _Leav_es LEadea
. neither is Impure.

Yes No No

i ! Loves Soda

Loves Troll 2 Loves Troll 2

Loves Troll 2 Loves Troll 2
Yes No Yes No Yes No Yes

0 1 3 0 o 1 3

Gini Impurity = 0.0
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Building a Classification Tree: Step-by-Step

At this point, we've created a Now the only thing remaining is to
Tree from the Training Data. assign output values for each Leaf. -..,

+ .
SRt
.

Loves Loves Loves %

Popcorn Soda Age | T2 Loves Soda :

Yes Yes 7 No 4

Yes No 12 No ) Age < 12.5 Loves Troll 2

No Yes 18 Yes

No Yes 35 Yes

Yes Yes 38 Yes Loves Troll 2 Loves Troll 2

Yes No 50 No M° Yes—No ‘-,_

No No 83 No g : 8 0 H

Generally speaking, the In other words, because the
output of a Leaf is majority of the people in this Leaf -\,

whatever category that do not love Troll 2, its output ’~..
has the most counts. value is does not love Troll 2. kS
Hooray!!l After assigning output values
@ to each Leaf, we've finally finished Loves Soda A
building a Classification Tree. 7

e

Age <125 Does Not
Love Troll 2

Does Not Loves Troll 2
Love Troll 2

{ Bam?

Not yet, there are
still a few things we
need to talk about. #




Building a Classification Tree: Step-by-Step

. When we built this tree, only ...and because so few people in the Training

@ one person in the Training Data made it to that Leaf, it's hard to have

Data made it to this Leaf... confidence that the tree will do a great job
o, making predictions with future data.

o However, in practice, there are two main

L ways to deal with this type of problem.

Loves Loves
Popcorn| Soda

Loves Soda
Yes

"
"
"
ArmEmrEEEEEsEEEEEEEEREEEEREEEEREnRnnRRnnnnna®

Age <125

Loves Troll 2
Yes No
0 1

One method is called Pruning, but we’'ll save
that topic for The StatQuest lllustrated Guide

to Tree-Based Machine Learning!!!

Alternatively, we can put limits on
how trees grow, for example, by
requiring 3 or more people per Leaf.
If we did that with
our Training Data,
we would end up Loves Soda
with this tree, and ***""*., Yes

this Leaf would be v \ ’ v
Impure... Loves Troll 2 |l Loves Troll 2 Does Not

...but we would Yes No Yes No Love Troll 2
also have a 3 1 0 3 i

better sense of &

the accuracy of b (L SR

our prediction . ; :
Bacatise we ALSO NOTE: Even though this Leaf is

NOTE: When we buildatree,  Impure, it still needs an output value, and

kn705vg/: r;afttggly we don’t know in advance if it's  pecause most of the people in this Leaf

: better to require 3 people per love Troll 2, that will be the output value.
people in the Leaf or some other number, so
Leaf love Troll 2.

we try a bunch, use Cross
Validation, and pick the B AM ' ' '
number that works best. EEN

Now let’s summarize how to
build a Classification Tree.
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Building a Classification Tree: Summary

From the entire Training Dataset,

®

Soda for the Root of the tree.

e
.

Loves Loves A Loves 4-”. R
Popcorn  Soda 9 Troll2
Yes Yes 7 No
Yes No 12 No
No Yes 18 Yes
No Yes 35 Yes
Yes Yes 38 Yes
Yes No 50 No o
No No 83 No

Loves Troll 2

Then we used the 4 people
who love Soda, which were a
mixture of people who do and
do not love Troll 2, to calculate
Gini Impurities and selected .

Age < 12.5 for the next Node. * Double
BAM!!

0
o'

Loves
Troll 2

Loves
Soda

Loves
Popcorn

Age

B
. .*
rauman®

Y.

Yes
Yes Yes 38 Yes

Pae [ PR

) ow that we know al[
about Classification
Trees, it's time for Part

No

©

Age <125

As a result, the 4 people

we who love Soda went to the
used Gini Impurity to select Loves feft and the 3 people who

do not love Soda went to

the right.
BAM!

Loves Soda

Loves Troll 2
Yes

Loves Troll 2
Yes

Then we selected

output values for each .+
Leaf by picking the .,
categories with the

.
‘e

highest counts.

Loves Soda

Does Not
Love Troll 2

Loves Troll 2

", Deux, Regression Trees!!! &% &




Regression Trees



Regression Trees: Main Ideas Part 1

@The Problem: We have this Traini

Dataset that consists of Drug

ny‘
Effectiveness for different Doses.. i
100~ 4

...and fitting a straight line to the data
,+=* would result in terrible predictions
3 < because there are clusters of ineffective
= : Doses that surround the effective
s G:CD K Doses. A
Drug 75 ) %
Effectiveness ) 1009 . e .
G ML , @D < -.
-"_ Drug 75 .
254 X Effectiveness :
@) ®) % 50- Y
10 20 30 40
Drug Dose

254

mo_'_gmﬁ’

10 20 30
Drug Dose

A Solution: We can use a Regression Tree, which, just like a

Classification Tree, can handle all types of data and all types of

relationships among variables to make decisions, but now the output

40
is a continuous value, which, in this case, is Drug Effectiveness.

Just like Classification Trees, Regression Trees are relatively easy to interpret
and use. In this example, if you're given a new Dose and want to know how
Effective it will be, you start at the top and ask if the Dose is < 14.5...
Dose<14.5 A ...if it is, then the drug will be 4.2%

No Effective. If the Dose is not < 14.5,
.2% Effective Dose = 29

then'ask if the Dose = 29...
(__..‘-‘
No ...if so, then the drug will be
2.5% Effective. If not, ask if the
. . Dose = 23.5...
2.5% Effective A TTL

Dose = 23.5

52.8% Effective

...if so, then the drug will be
100% Effective

52.8% Effective. If not, the drug
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Regression Trees: Main Ideas Part 2

In this example, the Regression Tree makes good predictions because
each Leaf corresponds to a different cluster of points in the graph.

100+

If we have a Dose < 14.5,
then the output from the
Regression Tree is the

Drug 757
Effectiveness .
% o average Effectiveness from
these 6 measurements,
e . e which is 4.2%.
PPl i ¢
10 20 30 40 !

If the Dose is = 29,
then the output is the
average Effectiveness

from these 4
measurements, 2.5°/9.

"
e

1004 s
75+ H
50+
4
25+ G : ’
T T : T 5 .:
10 20 130,40 : :
If the Dose is between 23.5and &
29, then the output is the ol If the Dose is between 14.5and ¢
average Effectiveness from .,~‘ 23.5, then the output is the s
these 5 measurements, 52.8%. average Effectiveness from
u these 4 measurements, 100%.,
100+ ST 2
: 100+ : :
J— - H(((ORIPRL
751 : : o e :
: % : 754
50+ A e
Mt 50+
25+
25+
10 20 30 40 o
10 20 30 40
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Building a Regression Tree: Step-by-Step

Given these Training Data, we Just like for Classification
want to build a Regression Tree Trees, the first thing we do for
that uses Drug Dose to predict a Regression Tree is decide

Drug Effectiveness. what goes in the Root.

»
o
o

100+ 222 L o

Drug 75"
Effectiveness
% 50

25+

10 20 30 40
Drug Dose

To make that decision, we calculate
the average of the first 2 Doses,
which is 3 and corresponds to this

do ed_ Rne and then we build a very simple

1007 : ! tree that splits the measurements
: s into 2 groups based on whether or
Drug 757 i not the Dose < 3.
Effectiveness | & e et
50+ : 4
P Al
25+ Dose < 3
¢ 10 30 40
A-. Drug Dose
0.‘... JURCTTLIEN « A

Because only one point , ” ‘
has a Dose < 3, and its & o
average Effectiveness is 0, 100+ : @

we put 0 in the Leaf on

L T T e
~
3
Il

the left. :
All other points have a :

Dose = 3, and their 504 :

average Effectiveness is ".:Z ICD =

38.8, so we put 38.3 in the 254 :

Leaf on the right. i ® o
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Building a Regression Tree: Step-by-Step
@ For the one point witlf“ .the Regression
Dose < 3, which has Tree makes a pretty

Effectiveness = 0... good prediction, 0.

100 ;
Drug 757 ' _: ..':
Effectiveness | : o R
% 504 : .
254 8
A In contrast, for this specific
:} - - - : point, which has Dose > 3
: 10 20 30 40 and 100% Effectiveness...
Drug Dose B
1009 : @) 4 ...the tree
3 predicts that the
754 : Effectiveness will
We can visualize how B 288, WHlel e,
o : a pretty bad &7
good or bad the i prr)edic)fcion.
Regression Tree is at : [
making predictions by 254 1 K
drawing the Residuals, : D 3
the differences between LY ——T))) 036 ;
the Observed and 110 20 30 40 No
Predicted values. Drug Dose y ¥
1007 : Average = 38.8
We can also quantify
& how good or bad the
: predictions are by
504 : calculating the Sum of
i the Squared
254 A) (L Residuals (SSR)...
H # ...and when the
e 20 aD %0 o threshold for the tree is Lastly, we can
o] i o 5 Dose < 3, then the compare the SSR for
- Y SSR = 27,468.5. dlﬁergnt thresholds py
A X PR plotting them on this
graph, which has Dose
(0 = 0)2 ok (0 = 388)2 o (0 = 388)2 e (0 = 388)2 ..’ 301600 'V on the x-axis and SSR
+(5-38.82+(20-38.82+(100-3882 | ® 4 ontheyade
: 15,000 (.o 1
+(100-38.82+...+(0-388)2 7 SSR A
e § T 0 20 30 4
Dose
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Building a Regression Tree: Step-by-Step

Now we shift the Dose threshold to ...and we build this super
be the average of the second and simple tree with Dose < 5 at
third measurements in the graph, 5.

the Root. *

| LT

Average = 41.1 <.,

Al of the other points
have Dose 2 5, and
their average is 41.1,%,
so we put 41.1 in the o
Leaf on the right.

.
.
l
H
o

.
.
.
.
.
.
.
"
.
.
.
.
G
3

100-
754 i .
504 @ Average =0
: '." Because the average .‘
254 i ’ Effectiveness for the 2
. points with Dose < 5is :
0, we put 0 in the Leaf »
po 1020 30 40 s, ontheleft. .
. Drug Dose :.' to, e
00
Now we calculate and plot
the SSR for the new 50+
threshold, Dose < 5...
e ‘.." ...and we see that the SSRfor 22
’ Q <.." Dose<5isless than the SSR i
for Dose < 3, and since we're .
15,000 trying to minimize the SSR,
SSR Dose < 5 is a better threshold.
L] L] LI L]
10 20 30 40
Dose

Then we shift the threshold to

!

10

3
!

Drug Dose

40

...and that gtves_/-A .
us this tree... ...and this

@ be the average of the third f
and fourth measurements, 7.. : point on
2 v the graph.
1009 Dose <7
Drug 757 : -
Effectiveness | & @ :
% 50d i '
1) = s
i 30,000
254 & \ i
‘E $ »® o
3 15,000 b [TTTPrr s
10 20 30 40 SSR
Drug Dose - - - -
10 20 30 40
Dose
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Building a Regression Tree: Step-by-Step

Then we just keep shifting the threshold to the
average of every pair of consecutive Doses, K
c

reate the tree, then calculate and plot the ssR" a0

100+ .

Dose <9 15,000
N ((( SSR
: Dose
50+ e ]
25+ After shifting the Dose threshold over
: 2 more steps, the SSR graph looks like this.
M0 20 30 40 = <!
Drug Dose 100+ H FC(( .
1 IR ;
<l ;
Then, after shifting the A 3 U 0.0 o
@ Dose threshold 7 more : 0 4
times, the SSR graph 25+ : 15,000+
i looks like this. «, SSR
. % 10: 20 30 40 10 20 30
100= B -, 5 Drug Dose Dose
7 { it And finally, after shifting the
% - Dose threshold all the way to
50+ D : the last pair of Doses...
L i
5= O ‘ - 100+ 2
( 5 )} HEER :
S0 20 B0 a0 L "I'thislskR g,:aph
: S ooks like this.
Drug Dose :- 50- 33 s
il J) : :

10 20 30 40

Drug Dose V
30,000+ o
% A e »
15,000~ U BAM!
SSR
10 20 30 40
Dose



Building a Regression Tree: Step- tep
Looking at the SSRs for each Dose

threshold, we see that Dose < 14.5
had the smallest SSR...
..S0 Dose<145 Dose < 14.5

WI|| be the Root

30,000 :

« of the tree..
15,000 (o]
SSR

10 20 30 40

Dose
...which corresponds to splitting
the measurements into two
groups based on whether or not
Now, because the threshold in the Root of
@ the tree is Dose < 14.5, these 6
measurements go into the Node on the /eft...

the Dose < 14.5.

100+ :
75+ ,. 2 o .': - "'."._ Dose < 14.5
; TS % 100 i <
254 :
(@) o 20 : ...and, in theory, we
i : : could subdivide these
10: 20 30 40 254 ¥ G 6 measurements into
Drug Dose 7 smaller groups by
: repeating what we just
10: 20 30 40 did, only this time
Drug Dose focusing only on these
6 measurements.

In other words, just like before

we can average the first two
Doses and use that value, 3, as
a cutoff for splitting the 6
measurements with DOM. .then we calculate the SSR for
just those 6 measurements and
plotitona graph..

into 2 groups..:
.
B

-
an®

K
+,

%
o

100+ : - it
30010 .
150+

504 : ;
= a
3 L} a1
7.25 145
Dose

Dose < 14.5

754 &

Dose < 3

40

10: 20 30
Drug Dose
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..and then we select the

Building a Regression Tree: Step-by-Step
And after calculating the SSR for :
@ each threshold for the 6 threshold that gives us the
measurements with Dose < 14.5, lowest SSR, Dose < 11.5, for
the next Node in the tree.

+ we end up with this graph...
1009 ¢ s o BAM?
: ; No. No bam.
754 i :
Dose < 14.5
b |

15 145 e

Dose
Average = 20

10: 20 30 40
Drug Dose

Earlier, we said in theory we could Dose < 14.5
@ subdivide the 6 measurements with
Dose < 14.5 into smaller groups...
...but when we do, we E 3
: end up with a single
measurement in the v
Leaf on the right o
because there is the
only one measurement ----w-‘-'-‘.'.'.._,_.
with a Dose between
11.5and 14.5... 1007 P

254 ¥
O ...and making a 75
: prediction based on a
10: 20 30 40 single measurement
suggests that the tree is 50"

100+
75+

504 :

s
s

»
. .
Tenamans

40

Overfit to the Training -
Dataand may not  25- P oA
perform well in the 3
future. L
L] L L] L]
10: 20 30
Drug Dose

The simplest way to
prevent this issue is to
only split measurements
when there are more
than some minimum
number, which is often
20. However, since we
have so little data in this
specific example, we’ll
set the minimum to 7.
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Building a Regression Tree: Step-by-Step

Now, because there are only 6 measurements *-.and because we require a
with Dose < 14.5, there are only 6 minimum of 7 measurements for
further subdivision, the Node on

measurements in the Node on the left..:
e the left will be a Leaf...

"‘ ".'---luu.
0 Yoy
100= : *, Dose < 14.5
i | F

50+

Dose < 14.5

4.2% Effective

...and the output value for
the Leaf is the average

"+ Effectiveness from the 6
" measurements, 4.2%.

25+ :
a .
10 : 20 30 40 2 .
o 2 BAMM

m—
TN

.
.
»

l.)rug Dose _."

Drug 797 !

Effectiveness : :

Now we need to figure out % sod4 i i
what to do with the 13 PO
remaining measurements 25 q :

with Doses = 14.5 that go to
: the Node on the right. +, :
10 20 30 40
Drug Dose

Y

2

. aanay
.

Ceraunst .,

.
.
-
.
.
Y
e .
.
.
)

o ey G
14 Since we have more than 7 measurements
751 : H in the Node on the right, we can split them
: : into two groups, and we do this by finding
50+ : e the threshold that gives us the lowest SSR.
: i 100~ s
25= E :: m ' ‘::}.
: Om 117 | -
10 20 30 40 : :
Drug Dose : 507 : o :
: : POl :
254 : : H
Dose < 14.5 o _ O
QD |

» L] L]
10: 20 30 40

Drug Dose

Dose < 14.5
A\ ]

Dose =29
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Building a Regression Tree: Step-by-Step

with Dose = 29, there are only 4

@ And because there are only 4 measurements
measurements in the Node on the left..:

K Dose < 14.5
Drug 77 P 5
Effectiveness : X
: 4 o

254 Py ()
o -
30

I o

e

...and since the Node has fewer than 7
5 40 measurements, we’ll make it a Leaf, and the
k output will be the average Effectiveness from
* those 4 measurements, 2.5%.

10} 20
Drug Dose

.
.
.
Y
)
.
.

o
»
-
N
.

Now, because we have "'.‘
more than 7 measurements e %
with Doses between 14.5
and 28, and thus, more e,
than 7 measurements in e, 2
the Node on the right..: 2.5% Effective
&,

3
Ol
sne 0
y LT

o1y

75+ : ]
1 : Dose < 14.5 .
50 : K

Dose = 29
\4

0
.
*

...we can split the
measurements into two

o groups by finding the
: : Dose threshold that
: : results in the lowest
L] T ¥ 1 3-_ SSR.
10: 20 30 40 S
Drug Dose ot T o ‘o,.

1007 2 5
m: Dose < 14.5 ."_
75+ :
: Dose = 29 H
50+ : 4
3 Dose = 23.5
25+ : :
] : T ; 1
10 30 40

i 20 :
Drug Dose i



Building a Regression Tree: Step-by-Step

And since there are fewer ...this will be the last split, because
than 7 measurements in none of the Leaves has more than
each of these tw? groups. . 7 measurements in them.
., Now, all we have to
| t do is calculate the
100+ Qi o) output values for
: et Doseiis the last 2 Leaves.
Drug 75+ %
Effectiveness : : :
0, . . 0
264 PG
i — —
10: 20 = 30D 40
Drug Dose

So, we use the average Drug Effectiveness for
measurements with Doses between 23.5 and 29,
52.8%, as the output for Leaf on the left...

100+
Dose < 14.5
Drug 754
Effectiveness Dose > 29

% 50s

2= 4 %

e : :
52.8% Effective | 100% Effective
L L]
10 20 A
Drug Dose il

& 100+ : :

@ ...and we use the average Drug * 754

Effectiveness for observations with Drug : H

Doses between 14.5 and 23.5, 100%, EﬁeCt,';’e"ess : :

as the output for Leaf on the right. ° 507 : :

25= :

1T L] : ] 1
10: 20 = 30 40
Drug Dose

Now, at long last, we’ve finished
building the Regression Tree. DOU BLE BAM ! !!
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~~ BUT WAITII ™
\.THERE’S MORE!




Building a Regression Tree

With Multiple Features: Part 1 NOTE: Just like for

Classification
So far, we've built a Regression Tree
using a single predictor, Dose, to

- Trees, Regression
predict Drug Effectiveness.
H

Trees can use any

type of variable to

make a prediction.
However, with

100+ )
@ . 20 0 Regression Trees,
) . we always try to
Drg 7° L > 35 6 predict a
Eﬁec*;e"ess % 5 44 continuous value.
o 504 -
etc... elc...
25+

predict Drug Effectiveness

mo O:E Now let’s talk about how to
10 20 30 0 build a Regression Tree to

Drug Dose 5
using Dose, Age, and Sex.

+

A s

First, we completely ignore Age
and Sex and only use Dose to
predict Drug Effectiveness..:

.
e
. L

m

=29

o c

Q@

o &
- O

o B
2 m Z
i |-

ST ©oog etc... | etc... etc... etc...
i 20 i P00
E 35 ¢ : 6 i ..andthen we selsctthe
Pyl i 44 ¢ threshold that gives us
: : : : the smallest SSR.
I etc... * ! etc... - \
"ssssassss 1} "sssssssssal :l HOWeVer, |nstead of that
_:' threshold instantly becoming
‘ the Root, it only becomes a
» i .=+ candidate for the Root.
100+ 2
754 : : This might be the Root,
Drug : a X but we don’t know yet.
Effectiveness : .
% 50- ; )
25+ O

10: 20 30 40

214 Drug Dose



Building a Regression Tree

With Multiple Features: Part 2

Then, we ignore Dose and Sex
and only use Age to predict
Effectn{gness... > .and we select the

et threshold that gives us
the smallest SSR..:

100+ Wyt ...and that
P25 “5 becomes the
: second candidate
: 7 for the Root.
T :
ioetc.. * :
20 40 60 80 v

Age

Lastly, we ignore Dose and Age
and only use Sex to predict
Effectiveness...

Average =3 Average = 52

...and even though Sex only has
one threshold for splitting the
data, we still calculate the SSR,

POF | ] just like before..:
S o {100, B
: F | 6
Y ’ 44 i 75
: ! ...and that becomes
i E‘?.,,..Lf.t?; i the third candidate
for the Root.
25+ ;
Female : M;Ie ,-'
| 4

Yes No

Average = 52 Average = 40
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Building a Regression Tree

With Multiple Features: Part 3

Now we compare the SSRs for
each candidate for the Root...

v
as®

.
»e®

Dose < 14.5

Yes No

| \ SSR = 19,564
Average = 4.2 ll Average = 51.

...and pick the one
with the lowest
 value...

o
K
+

s SSR=12,017 <

No
Average =3 W Average = 52 ...and because Age > 50 had

the lowest SSR, it becomes the
Root of the Regression Tree.

.
.

N Ssm=20738 Y
Age > 50

Average = 52 Average = 40

# Hey Norm, what'’s your favorite P g,
, thing about Decision Trees? ##” Good question ‘Squatch! | like
. ¥ how easy they are to interpret and  §
R, how you can build them from any ¢

type of data.




Building a Regression Tree

With Multiple Features: Part 4

Now that Age > 50 is the Root, the
) e ! ...and the people who are < 50 go
® people in the Training Data who are oldef to the Node on the right.

than 50 go to the Node on the /eft...

Drug

-..
3
IR R

Then we grow the tree just like before, except now for
each split we have 3 candidates, Dose, Age, and Sex,
and we select whichever gives us the lowest SSR...

...until we can no longer subdivide the
data any further. At that point, we're
done building the Regression Tree.

Age » 65 TRIPLE BAM!!!

Y. A

NOTE: The final
prediction is Drug
Effectiveness.

Now that we understand
Decision Trees, let’s learn about
Support Vector Machines!!!
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Chapter 11

Support Vector
Classifiers and

Machines
(SVMs)!!!




Support Vector Machines (SVMs): Main Ideas

The Problem: We measured how much Popcorn people ate,
in grams, and we want to use that information to predict if

@someone will love Troll 2. The red dots represent people who
do not love Troll 2. The blue dots represent people who do.
In theory, we could create a
y-axis that represented whether

& ¥
or not someone loves Troll 2 and
Popcorn Consumed (g) .-+ move the dots accordingly...
...and then use Logistic
£ Regression to fit an s-shaped
s + squiggle to the data...
: ...however, this s-shaped

squiggle would make a
terrible classifier because it
would misclassify the people

who ate the most Popcorn.

«+* Can we do better?

A Solution: A Support Vector Machine (SVM) can
In this example, the x-axis is
the amount of Popcorn

@ add a new axis to the data and move the points in
;s away that makes it relatively easy to draw a
straight line that correctly classifies people.
consumed by each person,
. and the new y-axis is the
square of the Popcorn values.

"_ Now, all of the points to the left
*., of the straight line are people
** who do not love Troll 2...
...and all of the people on the right
of the straight line loved Troll 2, so

|
Popcorn?
the straight line correctly separates
eseusnenes the people who /ove and do not
love Troll 2. BAM!!!

The first step in learning
how a Support Vector
Machine works is to learn
about Support Vector
Classifiers, so let’s get
started!!!

f YUMII | love
popcorn!!!
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Support Vector Classifiers: Details Part 1

1 Q = Loves Troll 2

If all the people who do ...and all of the people £
@ not love Troll 2 didn’t eat | who love Troll 2 ate a lot | @ - Dc?es st ITove Il
much Popcorn... of Popcorn... ’
Y 4

...then we could
pick this threshold
_.+to classify people.

Popcorn (g)

However, as you've probably already ...then the threshold will classify them
guessed, this threshold is terrible as someone who loves Troll 2, even
because if someone new comes along though they’re much closer to the
and they ate this much Popcorn... people who do not love Troll 2.
a : So, this
threshold is
D+ really bad.
Can we do
better?
YES!!!
Now the person we’'d previously
One way to improve the classified as someone who loves
classifier is to use the Troll 2 is classified as someone
midpoint between edges who does not love Troll 2, which
of each group of people. makes more sense.

However, one problem with using the midpoint
between the edges of each group as a classifier
is that outliers, like this one, can ruin it. \

Now, because of the outlier, which
K could be a mislabeled data point, the
O-0O00-0 OCD midpoint between the edges of each
Popcorn Consumed (g) group is relatively far from most of

/__\_/ the people who love Troll 2...
...and we’re back to classifying that new * i

person as someone who loves Troll 2,
even though they’re closer to a lot more

people whg do not love Troll 2. \
S

G d
peter . YESI!
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Support Vector Classifiers: Details Part 2

One way to make a threshold for " © = Loves Troll 2
classification less sensitive to : O = Does Not Love Troll 2

outliers is to allow misclassifications.

For example, if we put the threshold
halfway between tI:uese two people...

NOTE: Allowing the threshold
KO- . to misclassify someone from
the Training Data...
...then we’ll misclassify this person as
someone who does not love Troll 2, even \4
though we’re told that they do... KO |
v ...in order to make better predictions...
KO- - :
A\ 4
KOm -
...but when a new person comes along...
v'qv ...is an example of the Bias-Variance
BO)= - -l Tradeoff mentioned in Chapter 1. By

allowing for a misclassification, we
avoid Overfitting the Training Data

...they will be classified as not loving Troll 2, and increase the Bias a little, but we
which makes sense since they’re closer to improve our predictions of new data,
most of the people who do not love Troll 2. which suggests a reduction in

o Variance.

2N
HO-0C0- -

T..however, this new threshold
gives us the same result: one

Alternatively, we could put misclassification from the Training
the threshold halfway Data and the new person will be
between these two people..: reasonably classified.
2 e vY
KO- ONO- WA KO- © -1
To be honest, the remaining However, if we had a more complicated

combinations of pairs of points ~ dataset, we could use Cross Validation to
would give us similar results, so ~ decide which pair of points should define

it’s not super important which the threshold and determine how many
pair we pick. misclassifications of the Training Data to

allow in order to get the best results.
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Support Vector Classifiers: Details Part 3

Now, imagine Cross Validation determined § © =Loves Troll 2
that putting a threshold halfway between ] O = Does Not Love Troll 2

these two points gave us the best results...

...then we would call this threshold
a Support Vector Classifier.  BAM.
’0. “ .
] g )- % =] (i NOTE: Because we only measured how
= : much Popcorn people ate...
¥ P

sx, ar,
- 2‘ ] =]

Popcorn (g) b = &

.
vat

T

...the Support Vector Classifier, the threshold
we use to decide if someone loves or does not
love Troll 2, is just a point on a number line.

However, if, in addition to measuring how much Popcorn
people ate, we also measured how much Soda they
drank, then the data would be 2-Dimensio

...and a Support
Vector Classifier
would be a straight
.- line. In other words,
the Support Vector
Classifier would be
1-Dimensional.

Soda (ml)

A Popcorn (g)

If we measured Popcorn, Soda, and Age, then the
data would be 3-Dimensional, and the Support
Vector Classifier would be a 2-Dimensional pl.ane.\

o

o O A And if we measured
™ 4 things, then the
data would be 4-

Sod: | =
oda L D Cp —_ Dimensional, which

1 we can’t draw, but

the Support Vector
} } } i Classifier would be
ek Porcom @ it
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Support Vector Classifiers: Details Part 4

1 Q = Loves Troll 2

' () =Does Not Love Troll 2

Support Vector Classifiers ...but what if, in terms of Popcorn
seem pretty cool because consumption, the people who do not love
they can handle outliers... Troll 2 surrounded the people who did?

V ‘..o' .l*
KO-Ol #COH O—CO0—@e—000

Popcorn Consumed (g)

misclassified!

Now, no matter where we put the UGh Thse ats
Support Vector Classifier, we'll gn:
make a lot of misclassifications. .

Double Ugh!!
..»* These and these
are misclassified!!!

.

Triple Ugh!!!
These and these
are misclassified!!!
+ Canwedo ™,
s better??? %

>

' ' ' To see how we can do better, let’s learn
EEE about Support Vector Machines!!!

But first, we have to learn a little terminology...
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Te rm i nOIOgy Alert! ! ! Oh no! It’s the dreaded Terminology Alert!!!

’ @ = Loves Troll 2
@ The name Support Vector Classifier

comes from the fact that the points that ‘ O = D‘?es bick lfove i g
define the threshold...

...and any points-cioser to the threshold
are called Support Vectors.

The distance between the points that
define the threshold and the threshold
itself is called the Margin.

...and when we allow misclassifications,
the distance is called the Soft Margin.

Now that we understand the lingo, let’s try to get
a little intuition about how Support Vector
Machines work before diving into the details.

YES!!! The bad guys in Troll 2
are goblins, not trolls. The
distributors knew this, but
named it Troll 2 because they
thought people would rather
i, SE€ @ Movie about trolls.

Hey Norm, do
you have any
good Troll 2
trivia?




Support Vector Machines: Intuition Part 1

To get a general intuition about how Support Vector g © =Loves Troll2
Machines work, let’s return to the dataset that has the ¢ (© =Does Not Love Troll 2
people who love Troll 2 surrounded by people who do not. ; ]
-

iy

how much Popcorn each person ate,

O—00 @e—000 @ Now, even though we only measured
let's add a y-axis to the graph.

Popcorn Consumed (g)

Specifically, we’ll make the
y-axis the square of the amount
of Popcorn each person ate. Popcorn Consumed (g)

For example, because the first person
only ate 0.5 grams of Popcorn, their
x-axis coordinate is 0.5...

o
o

.t
P L

—_— =

Popcorn Consumed (g)

Now we just use Popcorn2 to dthei :
get the y-axis coordinates for .agn : eg \é;af'g 2
the remaining points. coordinate is 0.5% = 0.25.

L%

Popcorn2 o
g IS

.
»
.
o
5

Popcorn? g O
o_9 e o ik
_O — — - Popcorn Consumed (g)
Popcorn Consumed (g)
O
A
O
O
@ Popcorn2
Popcorn? O CQT O
@ @
8_Co—we—oomH o®
Popcorn Consumed (g) O_ — — O"

Popcorn Consumed (g)
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Support Vector Machines: Intuition Part 2

- Q = Loves Troll 2
Because each person has x- and ! (O =Does Not Love Troll 2
y-axis coordinates, the data are A - ;
now 2‘: Dimensional... ...and now that the data are 2-Dimensional,
i, @ we can draw a Support Vector Classifier
: ® that separates the people who love Troll 2
: = ) from the people who do not. BAM!!
Popcorn? :" H Fa
3 0
@
0o & . .
Popc.om Co.nsumezi Q) . Popcorn?
These are the
3 main stepsl!!! @) / . i .
The 3 main steps / Popcorn Consumed (g)
for creating
Support Vector

Machines are...

. i ) ) O—0C0—@e—000
Start with low-dimensional data. In this
@ case, we start with 1-Dimensional

< Popcorn Consumed (g)
data on a number line.

Then find a Support Vector Classifier
Then use the existing that separates the higher dimensional
@ data to create higher
dimensions. In this

: datainto two groups.
example, we created 2-
Dimensional data by B DOU B LE o
squaring the original "._
Popcorn measurements. 5 BAM ! !!
i e : )
S e
o O Popcorn?
Popcornz| eeet
@@
0o ® . o
% & & d [ )
Popcorn Consumed (g)

- L] L] :
/ Popcorn C

onsumed (g)




Support Vector Machines

| love making
popcorn from
kernels!!!

(SVMs): Details Part 1

@ Now, in the previous example, you may

have been wondering why we decided to
create y-axis coordinates with Popcornz...—’..instead of something
: really fancy like this.

»
T
Popcorn?

1 \/ Popcorn

In other words, how do

we decide how to

transform the data?

O To make the mathematics efficient,
O % Support Vector Machines use something
/ P. c N . called Kernel Functions that we can use

g opcorn Consumed (g) to systematically find Support Vector
Classifiers in higher dimensions.

Two of the most popular Kernel
Functions are the Polynomial Kernel

and the Radial Kernel, also known as
the Radial Basis Function.
The Polynomial Kernel, which
is what we used in the last
example, looks like this...

""""" > 1 Polynomial Kernel: (@ x b + N
...where a and b refer to ...r determines the
two different observations coefficient of the
in the data... polynomial...\
..c"‘ ...and d determines the
Y q » degree of the polynomial
@xb+r)
"..'.
Popcorn2 "»,
4 14
—_— @@=
Popcorn Consumed (g)
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Support Vector Machines
(SVMs): Details Part 2 JPolynomial Kernel: (@ x b + r)?

In the Popcorn example, _/)...and since we're squaring the term, we can
wesetr=1/2andd=2.. expand it to be the product of two terms...

+ o’
L L LTI T L
gunnn . s us

q k
@xb+r) =@xb+ZR=(@xb+g)axb+g)

s

o

ot
.
.
.

...and we can multiply
both terms together...

R PR

...and then combine P .
the middle terms... Ak . NOTE: Dot Products sound fancier
k 1 than they are. A Dot Product is just...
— 92h2 AL et avr,
a:b * :b *32 1‘ P :
...and, just because it (a’a2’ E) . b, bQ’E )

will make things look - .+
better later, let’s flip " ™.

the order of the first : ...the first terms
two terms... : . multiplied
bd Y . ab together...
1 g
=ab +a2b? + ¢
_ « grasen gennee,
..andfinally, . (a,:az,:l) ’ (b,:b2,:l
this polynomial ******~.,, Sy 2 e
is equal to this %,
Dot Product! “ ...plus the second
v terms multiplied
2hH2
=(a,a%, 3)-(b, b2, )| ab+ab together...

Hey Norm,
what’s a Dot
Product?

...plus the third
terms multiplied
al together.
4

Bam.

‘Squatch, Dot

Products are
explained in the

NOTE on the right.




Support Vector Machines 7

(SVMs): Details Part 3

To summarize the last > tr=1/2 -.and, after a lot o and then
page, we started with the /' * d 5 math, ended up W|th StatSquatch
Polynomlal Kernel.. this Dot Product learned that
------ Dot Products
)’: V' P v t;our;g fancier
1 1 an they are...
@xb+r) =(axb+3)2-(a a2, ) (b, b?, %)

...S0 now we need
to learn why we’re
so excited about
Since a and b refer to two different Dot Produ?:ts'"
observations in the data, the first terms
are their x-axis coordinates...

""" ...the second terms are their
(a a ) (b b ) @ y-axis coordinates...

0
0
e

.
.

Popcorn2

¥¥ . 8
— C ’ Popcorn? 4 A
Popcorn Consumed (g) :

O :
O—@—0O 00
Popcorn Consumed (g)
.- and the third terms However, since they are 1/2 for both
are their z-axis points (and every pair of points we
coordlnates select), we can 1gnore them.

; -,..A “‘ ot '.:‘
)

(a, a % b, b2z} (@, aZ,X)-(b, bZ,X)

Thus, we have x- and
y-axis coordinates for

The x-axis coordinate is the amount of
tl_1e daEa. Popcorn consumed, and the y-axis
5 o coordinate is Popcorn2.
A0 & © BAM!!
(a, a2 (b bz Popcorn? > A
..................... e @
e e —O0— 0— O
Popcorn Consumed (g)
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Support Vector Machines

(SVMs): Details Part 4

The reason Support Vector Machines use
Kernels is that they eliminate the need to
actually transform the data from low
dimensions to high dimensions.

-
e

=t

o Instead, the Kernels use the Dot
“» QO Products between every pair of
O points to compute their high-

dimensional relationships and find
the optimal Support Vector
) : Classifier.

Popcorn?

4

o
—00—00—0C-0H
Popcorn Consumed (g)
Popcorn2
For example, when ..we get this —F —de— (O=
@r 1/2 andd = 2 Dot Product / Popcorn Consumed (g)

W K 1 > 1 & 1

@xb+n? =(@xb+3p=@a,3) b b%3)

...and since a and b refer to two different observations
in the Training Data, we can plug their Popcorn values

into the Dot Product and just do the math.

b— @— @— - H

Umm... How do
we find the best
values for r and d?

------------------------

Just try a bunch of
values and use Cross
Validation to pick the
best ones.



Support Vector Machines

(SVMs): Details Part 5 @<,

I 4 ..
Popcorn? A s
O
For example, if this * and this person —O0—O9—00C-0:
person ate 5 grams ate 10 grams of Popcomn Consumed (g) H
of Popcorn -= Popcorn... H
‘-, b-" ...instead of the’
high-dimensional
o @ = = distance to find the

...then we plug the optimal Support

values, 5and 10, into Vector Classifier.

the Dot Product...

: | . :

Ha, a2=)i(b, 2i=)
....................... H .." A thfand S
g math... number, 2550.25..

v

.t
.

Umm...How on
earth does this
work?

fga relationships calculated by the Dot Products ah
used as input in a technique called the Lagrangian
Multiplier Method, which is like Gradient Descent.
Like Gradient Descent, the Lagrangian Multiplier
Method is an iterative method that finds the optimal
Support Vector Classifier one step at a time.

Unfortunately, the details of how the Lagrangian
Multiplier Method works are outside of the scope of
this book

\. . A
A

work, let’s briefly get an intuition of how
the Radial Kernel works.

Okay! Now that we understand most of - '
@ the details of how Support Vector
Machines and the Polynomial Kernel B AM ' ' '
EEN
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The Radial Kernel: Intuition

Earlier in this chapter, | mentioned that Sihes we've already talked
two of the most popular Kernel v
about the Polynomial

Functions for Support Vector Kernel. let's aet an
Machines are the Polynomial Kernel e e g
N L intuition about how the
and the Radial Kernel, which is also Radial Kernel works
called the Radial Basis Function. '

The basic idea behind the Radial ...we simply look to see how the closest
Kernel is that when we want to points from the Training Data are
classify a new person... classified. In this case, the closest points
: represent people who do not love Troll 2...
v ..E
4 SR

KO-@LO0—OO0O—0O0OCH K-@0—OO—0O0OCH
Popcorn Consumed (g) Popcorn Consumed (g)

...and thus, we classify the new person as
someone who does not love Troll 2.

BAM!!!

0

KO-@D0—O0O—000H
Popcorn Consumed (g)

The equation for the Radial ‘
Kerne] might look scary, ...and we find a good value for y
but it’s not that bad. (gamma) by trying a bunch of

values and using Cross Validation
to determine which is best...

This Greek symbol y,
gamma, scales how much
influence neighboring points

have‘on classification... v | 4 2 LT —
_}’(a—b ) Polynomial Kernel, a and

e & “**eu.ueer b refer to two different

e 1 oo observations in the data.

¥ DOUBLE
b=0— &= -+  BaAMIl

Believe it or not, the Radial Kernel
is like a Polynomial Kernel, but
with r= 0 and d = infinity... ...and that means that the
)

o5 Radial Kernel finds a Support

‘ St Vector Classifier in infinite

qi 1 dimensions, which sounds
@xb+r)=(@xb+0) crazy, but the math works out.

For details, scan, click, or tap
this QR code to check out the
StatQuest.
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Hey Norm,
what’s next?

*" Neural Networks, which sound super %
scary, but as we’ll soon see, they’re just
Big Fancy Squiggle-Fitting Machines.
by, So don’t be worried! »
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Chapter 12

Neural
Networks!!!




Neural Networks
Part One:

Understanding How
Neural Networks Work



Neural Networks: Main Ideas

The Problem: We have data that A.and the s-shaped squiggle that
show the Effectiveness of a drug Logistic Regression uses would not
for different Dq.ses.... make a good fit. In this example, it

would misclassify the high Doses.

Drug 100

Effectiveness Drug 100
% 50 Effectiveness
% 50
0
Low Medium High 0
Drug Dose Low Medium High
Drug Dose

Hey! Can’t we solve this -
problem with a Decision Yes!!! But they will probably not
Tree or a Support Vector all perform the same, so it’s a
Machine? 5 good idea to try each one to

5 see which works best.

-“

& A Solution: Although they sound super
intimidating, all Neural Networks do is fit fancy
squiggles or bent shapes to data. And like

Decision Trees and SVMs, Neural Networks do
fine with any relationship among the variables.

For example, we could gei/’_, .to fit a fancy
this Neural Network... squiggle to the data...

High

Low  Medium
Drug Dose

...or we could get thii/..to fit a bent shape
Neural Network... to the data. ‘—\

_/

Low Medium High

236 Drug Dose



Terminology Alert!!! Anatomy [EFSSEE—_—_—

Terminology Alert!!!)

of a Neural Network

Although Neural Networks A
usually look like super *sseses""
complicated groups of neurons

connected by synapses, which is

where the name Neural Network
comes from, they’re all made
from the same simple parts.

Neural Networks consist of /—\
Nodes, the square boxes... )
N ...and connections

HRON between Nodes,
H ) the arrows.

% Effectiveness
(Output)

“* | TR
-osa-}E

fimated when this N I Activation Functions, and they
werg esnmate W op Lus .e ura make Neural Networks flexible
Network was fit to data using a

X and able to fit just about any data.

process called Backpropagation. In
this chapter, we’ll see exactly what
the parameters do and how they’re
estimated, step-by-step.

. The bent or curved lines inside
The numbers along the connections some of the Nodes are called
represent parameter values that iy :
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Terminology Alert!!! Layers |[sisrakye:

Terminology Alert!!!)

Neural Networks are organized in ...and usually there
Layers. Usually, a Neural are multiple Output
Network has multiple Input Nodes that form an
Nodes that form an Input Layer... Output Layer...
’ 2

g A -
O -
o'

0

N
e ]
0 i
H S - oo
. N
. LT RO
. L 2 « .
0 5
0 = K
0 , :
s o
o, o
. +
0 o
0 B
-
*e., 3 &’
AT 2

...and the Layers of Nodes between the Input and
Output Layers are called Hidden Layers. Part of the art
of Neural Networks is deciding how many Hidden
Layers to use and how many Nodes should be in each

one. Generally speaking, the more Layers and Nodes, the
more complicated the shape that can be fit to the data.

Jgeth\,?: )r:a;r\?eplae SVI\:%:L ..a single Hidden Laka .and a single
Input Node with 2 Nodes in it.. Output Node.
{

5
.

o
.

o
0

A o'

Dose 4 Effectiveness
(Input) (Output)

x
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Terminology Alert!!!

! Activation Functions
(Oh no! A TRIPLE TERMINOLOGY ALERT!!)

The Activation Functions
are the basic building blocks

for fitting squiggles or bent
shapes to data. ¥ "+.,

.
.

.
.

@ There are lots of different Activation Functions.
Here are three that are commonly used:
ReLU, which is short for Rectified Linear Unit
and sounds like the name of a robot, is
probably the most commonly used Activation
Function with large Neural Networks. It’s a
Bent Line, and the bend is at x = 0.

SoftPlus, which sounds like a brand of
toilet paper, is a modified form of the
ReLU Activation Function. The big

difference is that instead of the line
being bent at 0, we get a nice Curve.
. . . . . e mSETSamn e
Although they might sound fancy, Lastly, the Sigmoid Activation Function |

Activation Functions are just like
the mathematical functions you
learned when you were a
teenager: you plug in an x-axis
coordinate, do the math, and the

output is a y-axis coordinate.

is an s-shaped squiggle that’s frequently
used when people teach Neural
Networks but is rarely used in practice.

For example, the

So, if we plug in ...then the SoftPlus will tell
SoftPlus function is: an x-axis value, us the y-axis coordinate is
x=214... L0t 2.25, because
SoftPlus(x) = log(1 + &) P & log(l +e214) = 2.25,
...where the log() function is D 47 Nowilets talk aboiit the
the natural log, or log base 5 main ideas of how
e, and e is Euler’s Number, Activations Functions
which is roughly 2.72.

work.
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Activation Functions: Main Ideas

The Problem: We need to create new, exciting shapes that can fit any dataset
with a squiggle or bent lines, even when the dataset is super complicated.

. = L)
Low Medium
Drug Dose

Low Medium High Low Medium High
Drug Dose Drug Dose

The Solution: Neural Networks
stretch, rotate, crop, and combine
Activation Functions to create new,
exciting shapes that can fit anything!!!

NOTE: The purpose of this

In the next section, A Neural illustration is simply to show you

Network in Action: Step-by- : where we're headed in the next
Step, we'll show you how section, so rather than think too
this Neural Network... hard about it, read on!!!

>

...to create this
squiggle that fits the
Training Data. *,

...stretches, rotates, crops,
and combines SoftPlus
Activation Functions..:

Low Medium High
Drug Dose
240



A Neural Network in Action: Step-by-Step

A lot of people say that Neural Networks are black boxes and that it’s
difficult to understand what they’re doing. Unfortunately, this is true for big,

fancy Neural Networks. However, the good news is that it’s not true for

simple ones. So, let’s walk through how this simple Neural Network works,
one step at a time, by plugging in Dose values from low to high and seeing
how it converts the Dose (input) into predicted Effectiveness (output).

*
.
i
.
ensiEEEERmnn [
i

Effectiveness
tput
i

( )
~sunfr058 > |

*

NOTE: To keep the math in this section simple,
let’s scale both the x- and y-axes so that they go B
from 0, for low values, to 1, for high values. 5 H
Drug 100 aa Drug ! (((@) T £
Effectiveness Effectiveness P
/80 = E
0 0 : :.'
Low Medium High 0 0.5 1 $ Y
Drug Dose Drug Dose oy

#
ALSO NOTE: These numbers are parameters that are
estimated using a method called Backpropagation,
al

nd we’ll talk about how that works, step-by-step, later.

For now, just assume that these values have already

been optimized, much like the slope and intercept are
optimized when we fit a line to data.

I
.
.
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A Neural Network in Action: Step-by-Step

The first thing we do is plug 1
the lowest Dose, 0, into the
Neural I:letwork. Effectivensss
A X ———
ey 0 05 1
o Drug Dose

Effectiveness

SOutput)
sl 0583|

Dose
(Input)
Llg=%
Now, the connection fromthe  (Dose x -34.4) + 2.14 = x-axis coordinate  *
Input Node to the top Node ) ) .
@ in the Hidden Layer (0 x -34.4) + 2.14 = x-axis coordinate = 2.14
multiplies the Dose by -34.4 4 7

and then adds 2.14...’_\‘ 2
...lo geta new x-axis ;' .
coordinate for the  i+*
Activation Function, 2.14.

" Believe it or not, even though ™

Neural Networks sound modern |

%_and cool, they have been around #
% since the 1950’s! —
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Then we plug the x-axis
coordinate, 2.14 into the

SoftPlus Activation
++*" Function...

®

b

] v
“ SoftPlus(x) = SoftPlus(2.14)

+..and do the

math, just like

we saw earlier..
2,

= log(1 + e214) = y-axis coordinate = 2.25

A Neural Network in Action: Step-by-Step

...and we get 2.25. So,
when the x-axis coordinate

is 2.14, the corresponding
s y-axis value is 2.25...

.

D | XI -
0se : S (LTI wemane®™™
(Input) 4l !
—— —x
O ...thus, when Dose = 0, the
» output for the SoftPlus is
it 2.25. So, let’s put a blue
Effaciveness dot, corrgsppnding tq the
) ., blue activation function,
Now let’s increase 1o %, onto the graph of the
“.,  original data at Dose = 0
., With a y-axis value = 2.25.
0 a anns®
0 0.5

@ the Dose to 0.2...
1 G
%
y
0 k'—
0 0.5 1
Drug Dose

...and calculate the new x-axis -+
coordinate by multiplying the Dose by
-34.4 and adding 2.14 to get -4.74..:

(Dose x -34.4)+2.14  y
0.2x-34.4)+2.14=-4.74

...and plug -4.74 into the SoftPlus
Activation Function to get the

corresponding y-axis value, 0.01.
SoftPlus(-4.74) = log(1 +e<74)
=0.01

+

¥
*
o
ans®

¥.
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A Neural Network in Action: Step-by-Step

Now let’s increasE/.L..and calculate the new x-axis coordinate
the Dose to 0.4.

b by multiplying the Dose by -34.4 and

Q i < adding 2.14 to get -11.6...
i .'.. "...
Si (Dosex-344)+214 "y
i (0.4x-34.4) + 2.14=-11.6
: : % ..andplug-11.6
1+ ;

% into the SoftPlus
Activation
*  Function to get
the corresponding

y-axis value,
which is a value
Drug Dose y closeto 0.
SoftPlus(-11.6) = log(1 + e116) ,-:
1 =closeto 0 «°
And if we continue to increase "
the Dose all the way to 1 (the
maximum Dose)... o Oq_
]
O 5.‘. 0 5 1
3
& ...and calculate the new x-axis
H coordinates by multiplying the Dose by
1 e -34.4 and adding 2.14...
vy ¥ " (Dosex -34.4) + 2,14 = x-axis coordinate
o, C@QAXX
0 Drug-Dose ! ...and plug the x-
axis coordinates
Dose into the SoftPlus
{Input) Activation

|

244

Lot .,

Function to get
“, the corresponding
% y-axis values...

SoftPlus(x) = log(1 + &%)

...we get these
blue dots. <



A Neural Network in Action: Step-by-Step

Ultimately, the blue
@ dots result in this
blue curve...\

z ...and the next step in the
Neural Network tells us to
multiply the y-axis coordinates
on the blue curve by -1 30

*e
*,
a

st

Drug 'Dose

Dose
(Input)

=

For example, when

Dose = 0, the current y-
axis coordinate on the o
blue curve is 2.25... -
1
0 0 '%Q Likewise, when we
Biiig 'Dose : multiply all of the y-axis ...we end up flipping
: coordinates on the blue and stretching the
H curve by -1.30... original blue curve to
-..and when we : G get a new blue curve.
@ muliply 225 by 130, O o "
we get a new y-axis et 5
coordinate, -2.93. T B ®,
. 14 » %
j T
00D § | e
0.5 H @) Yo
Drug Dose .:' .




A Neural Network in Action: Step-by-Step

Okay, we just finished a major
step, so this is a good time to
review what we’ve done so far.

First, we plugged
Dose values, ranging
from 0 to 1, into the
i+, input...

Ly 0 0.5
* Drug Dose

‘e

: » .then the SoftPlus
—theh wa Activation Function
i transformed the converted the ...and lastly, we
* Doses by multiplying transformed Doses transformed the y-axis
them by -34.4 and into y-axis coordinates by multiplying
coordinates... them by -1.30.

.
.
.
*
=t
. e
" Y

adding 2.14... %
| Hey <BAMM

3
*e

v
Dose
(Input)

.
.
e
s

A
0.5
Drug Dose
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A Neural Network in Action: Step-by-Step

Now we run Dose values through
the connection to the bottom
Node in the Hidden Layer. ,
1Y

-

. ."~.. Effectiveness
= 0 0.5 1
.,-' Drug Dose
Dose ,-"
(Input) #
|
TS
[x-2.520, X’
129 s
| ) I
L4 '/X N,
' 9 ...and then we stretch the
Read % y-axis coordinates by
w B multiplying them by 2.28
: to get this orange curve.

did and what we’re doing now is
that now we multiply the Doses

Al
The good news is that the only
difference between what we just
by -2.52 and add 1.29...

.
"
.
.
v
.
*
.
v
.
o

...before using the SoftPlus
Activation Function to
convert the transformed

» Doses into y-axis

coordinates...

of
o *
PULLE T,

+

4

O~ Sg
176
OOQ

Effectiveness

14
0 —

Effectiveness

0 —
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A Neural Network in Action: Step-by-Step

So now that we have
an orange curve..

...and a blue
curve..

...the next step in the
Neural Network is to
add their y-coordinates

together. -,

0
.

.
ranannnt®

.
Y
)
.
.
.
.
.
H

Dose
(Input)

For example, when
Dose = 0, the y-axis
value for the orange

curve is 3.5...

0
.,
*
eay e 4
Rt L LY Ll

-..thus, when Dose = 0,
the new y-axis value is <
the sum of the orange
...and the y-axis and blue y-axis values,
value for blue 3.5 +-2.9=06. We'l
curve is -2.9..: keep track of that 0.6
value by putting a

green dot here.
i 1+

.
.
"
.
.
.
. .
. s,
. .
. .
x Th 4
.
.

3 0

1=
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A Neural Network in Action: Step-by-Step

Then, for the remaining ...plot the
Dose values, we just add resultlng ..and, after connecting the
the y-axis coordinates of the green dot dots we ultimately end up
blue and orange curves.. values with this green squiggle.

-
- .
2 .

.
ann®®

»
¥
&
-

Hey Norm, can you
tell me about some of
the ways Neural
Networks are used?

Sure "Squatch! Neural Networks are used
for everything from identifying hand
written text, to classifying pictures of

different animals and they are even used

for self-driving cars!



A Neural Network in Action: Step-by-Step

Now that we have this green
squiggle from the blue and

7 orange curves..:

-..we're ready for the final step,
which is to add -0.58 to each y-axis
value on the green squiggle.

“Sumf; 554
P 4
‘

...but after subtracting
0.58, the new y-axis
coordinate for when

Dose =0 is 0.0 (rounded

to the nearest tenth).

For example, when
@ Dose = 0, the y-axis
coordinate on the

green squiggle starts
outat 0.6...

Likewise, subtracting 0.58 = o
from all of the other y-axis LT

coordinates on the green

squiggle shifts it down.\
.,

...and, ultimately, we

end up with a green

squiggle that fits the
Training Data.

B
ot

.,
.
e

DOUBLE
BAMII!
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A Neural Network in Action: Step-by-Step

Hoorayll! At long last, we see
the final green squiggle...

1

Effectiveness ...that this Neural

Network uses to
predict Effectiveness
.+, from Doses.

0.5 1
Drug Dose

e,

Effectiveness

(Output)

Srem>|1.0)

green squiggle and see that the output
from the Neural Network will be 1, and
thus, Dose = 0.5 will be effective.

: 4 Alternatively, if we plug Dose = 0.5 into the
Neural Network and do the math, we get 1,
Effectiveness

Now, if we’re wondering if a medium Dose
@ of 0.5 will be effective, we can look at the

and thus, Dose = 0.5 will be effective.

Y-~ TRIPLE
BAM!!

Now let’s learn
how to fit a
Neural Network
to data!
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Fitting a Neural
Network to Data with
Backpropagation



Backpropagation: Main Ideas
® The Problem: Just like for Linear Regression, Neural Networks have

parameters that we need to optimize to fit a squiggle or bent shape to data
How do we find the optimal values for these parameters?

Dose V Effectiveness
(Input) ’... Output

Sum +""" —)
L—-

A Solution: Just like for Linear Regression, we can

@ use Gradient Descent (or Stochastic Gradient

Descent) to find the optimal parameter values..:
HelghtlT ‘ “w‘o_.fﬂ_:r‘" v P

however, we don’t call it Gradient Descent. That
would be too easy. Instead, because of how the

derivatives are found for each parameter in a Neural
Network (from the back to the front), we call it
Backpropagation

4

5
o
o

Dose
(Input)

-
b

L BAMI!

s
.
.
.
-

Effectiveness
Output

S

m um|+-0.58 -)E-—
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Terminology Alert!!! Weights and Biases

" OHNO! It's the
In Neural Networks,
the parameters that 4:-.....,
we multiply are called %,

Alert!!!

t dreaded Terminology
Weights...

...and the parameters
we add are called = **====»
Biases.

However, the same process and ideas apply

In the example that follows, we’ll use
Backpropagation to optimize the Final Bias. --.,,
to optimizing all of the parameters. .,
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Backpropagation: Details Part 1

In this example, let's assume that we ...except for the Final Bias. So the
already have the optimal values for goal is to use Backpropagation to
all of the Weights and Biases... optimize this Final Bias.
¥ i
Dose Effectiveness
: (Output)

Y4
sune71 |

NOTE: To keep the math 1 @)
 relatively simple, from now i
on, the Training Data will
have only 3 Dose values,
0, 0.5, ?nd 1. 0

. 0 0.5 1
Tt veriereeanes ¥ Drug Dose

Now let’s remember that when
we plugged Doses into the input,
the top of the Hidden Layer
gave us this blue curve..”

s
ehiSe
e,

N

.

...and the bottom of the
Hidden Layer gave us this
orange curve...

X ...and when
Input v o4 . we added the
D y-axis
i coordinates

- from the blue
and orange
curves, we got
this green
squiggle.

|

.
.
tamaunr
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Backpropagation: Details Part 2

Now that the Neural
Network has created
the green squiggle...

.
.

.
"
.
.
.
5
-

However, because we don’t yet know
the optimal value for the Final Bias,
we have to give it an initial value.
Because Bias terms are frequently

initialized to 0, we’ll set it to 0...

' Output
g Outpi

R e
sum 50 > |

...we're ready to add the Final
Bias to its y-axis coordinates.

» Output
V T —
Sumf 772}

...and adding 0 to all of
the y-axis coordinates on
the green squiggle leaves
it right where it is...

.
.

.
.
.
"

.

>

...which means
the green
squiggle doesn’t
.- fit the Training
Data very well.

¥ e

o
o



Backpropagation: Details Part 3

@ Now, just like we did for R2, Linear Regression, and

Regression Trees, we can quantify how well the green
squiggle fits all of the Training Data by calculating the
Sum of the Squared Residuals (S§R)

n i . (g
SSR =Z(Observed.- - Predicted)?
i=1

For exampile, for the first Dose, 0, the :
Observed Effectiveness is 0 and the I:fn r‘:‘é ‘; %jgstehf ggsﬁ;lal
peso L Bl the (\;Vbserved E;fec'ti\./e e\gs
Neural Network predicts 0.57, so ) i
. is 1, but the green squiggle
we plug in 0 for the Observed value radicts 1.61
and 0.57 for the Predicted value into p. U
the equation for the SSR.
'u

+

<~ issm=(0-0572 ;&
4 & :

? ‘.."" \4

+(1-1.61)2 05 -
0.5 1 Drug Dose
Drug Dose it :
+(0-0.582i=1.01
4 ------------ .
N _" i
Then we add the : 1
Residual when :
Dose = 1, where the
Observed value is
0 and Predicted o 3 Lastly, when we do the
value is 0.58. _." “,  math, we get SSR = 1.0 for
g .. When the Final Bias = 0.
: e, o
,c'. : Output
& -
———
0.5 1

Drug Dose

i .1—-—
Sum -9»!
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Backpropagation: Details Part 4

Now we can compare the SSR for different
values for the Final Bias by plotting them on this
graph that has values for the Final Bias on the x-

axis and the corresponding SSR on the y-axis.

o
DS 4=

i > ssR
H 2+ AT
5 (0] Thus, when the Final
X5 Bias = 0, we can draw a
05 0 05 “,  pinkdotatSSR=1.
o, Final Bias s o
'-..."__.--Y Caant
K Output

Summ')’é

'I:f"\;w-i ;?;th; ...then we shift the ...and we can calculate
_% 25 S green squlggle the SSR and plot the
down a little bit.. value on our graph.

fea,
......

v
Sum
-0.5 0 0.5
Final Bias

0.5 1
Drug Dose

258



Backpropagation: Details Part 5

S;ttll’lgt th% I;mal shlftslth: green ..and results in a
ias to - A squiggle down a shghtly lower SSR.
Ilttle bit more.:

5
X

Final Bias

Drug Dose

And if we try a bunch of different values for the
Final Bias, we can see that the lowest SSR

occurs when the Final Bias is close to -0.5...

-0.5 0 0.5
Final Bias

...however, instead of just plugging in a bunch of numbers
@ at random, we’'ll use Gradient Descent to quickly find the
lowest point in the pink curve, which corresponds to the

Final Bias value that gives us the minimum SSR...

...and to use Gradient

4 Descent, we need the
SSRZ derivative of the SSR with

respect to the Final Bias.
05 0 05 . 9SSR 4~
Final Bias """ d Final Bias

-0.5 0 0.5

259



Backpropagation: Details Part 6

Remember, each Predicted
value in the SSR comes from
the green Sqmggle n :. ................ .
% SSR = Z (Observed; - : Predicted;)?:

=1

0.5 1 o
Drug Dose sl ‘e,

. s
L] '0' ..
o

_. ...and the green squiggle comes from
H the last part of the Neural Network, when
: we add the y-axis values from the blue

and orange curves to the Final Bias.

iSum i - o
Now, because the PredicM . E
@ values link the SSR... ...to the Final .I:::las...
G P— ¢
SSR = ) (Observed; -} Predicted;?:
s ,,._i=1 ..:. ............... L
o K " . SF :
PITTOIPPPP . | 4
Predicted = green squiggle = blue curve + orange curve + Final Bias
4 d SSR »
Sor d Final Bias ...we can use The Chain
A Rule to solve for the
: O “.,  derivative of the SSR with
i < “r===*"respect to the Final Bias.

-0.5 0 0.5
Final Bias
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Backpropagation: Details Part 7

The Chain Rule says that the .
@ derivative of the SSR with === » 4SSR__ _dSSR . d Predicted
respect to the Final Bias..: d Final Bias d Predicted  d Final Bias

R A

...is the derivativeofthe .
SSR with respect to the ==:e«ereasas=ss
Predicted values

...multiplied by the derivative of

=1 : the Predicted values with
s respect to the Final Bias.
v:. e __..-.--' '-,...'
T <« A e .

Psst!
If this doesn’t make any
sense and you need help
with The Chain Rule, see
Appendix F.

The Chain Rule is worth learning about
because shows up all over the place in machine
learning. Specifically, anything that uses
Gradient Descent has a good chance of
involving The Chain Rule.



Backpropagation: Details Part 8
Now that we see that ..Is the derivative ...multiplied by the
the derivative of the of the SSR with derivative of the
SSR with respect to the respect to the Predicted values

Flnal Bias... Predlcted values..: with respect to the
Final Bias...
“a dSSR__ dSSR_ dPredicted .-

d Final Bias d Predicted  d Final Bias

] NOTé: For more

...we can solve for the first e :
part, the derivative of the ...which, in turq, details on how to
SSF’! anhi s R can be solved using solve for this
 Predicted Salues The Chain Rule... derivative, see
o ~ Chapter 5.
i >..by movin
2 dSSR_ _ Z (Observed; - Predicted;)? the Zq uare 3,
d Predicted d Predicted "oy the front...
’ ...and multiplying
".» “___.....--...........:__"__ everything by the
n p A 4" derivative of the stuff
H = 22 x (Observed; - Predicted)) x -1 inside the parenthieses,
. Koo which is -1...
0 =1 R s . A
kY ...and, lastly, we simplify
e '+ by multiplying 2 by -1.
4
ot BAM!!!
B ™ .
d SSR . We solved for the first part of
——— =Z -2 x (Observed; - Predicted)) the derivative. Now let’s solve
d Predicted =, for the second part.
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Backpropagation: Details Part 9
@T he second part, the derivati

ve
of the Predicted values witr/‘
respect to the Final Bias...

...is the derivative of the
green squiggle with
respect to the Final Bias...
». p.""- T
d Predicted _ d A ...which, in turn, is the derivative
d Final Bias - d Final Bias green squiggle of the sum of the blue and orange
curves and the Final Bias.
= d “
d Final Bias

Y
(blue curve + orange curve + Final Bias)

@ Now, remember that the

blue and orange curves...

A

.,
- ‘0

e
o

before we got to the
. Final Bias...

Sum

\...were created
i ST ——— . %
/ i
S

...thus, the derivatives of the
blue and orange curves with
respect to the Final Bias are
both 0 because they do not
depend on the Final Bias...

o "
g (blue curve + orange curve + Final Bias) =0+ 0 + 1
d Final Bias x 4

"". ot
...and the derivative of the Final
Bias with respect to the Final Bias

is 1. So, when we do the math, the

d Predicted _ 1
d Final Bias

derivative of the Predicted values
with respect to the Final Bias is 1.

ot

o

DOUBLE BAM!!!
We solved for the

second part of the
derivative.
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Backpropagation: Details Part 10

Now, to get the derivative - ...and the derivative of
. ...the derivative of the 8
of the SSR with respect SSR with respect to the the Predicted values
to the Final Bias, we p with respect to the

.+ simply plug in... Predl(.:ted pel Final Bias.
T d Pri d':ted
edal
— =Z -2 x (Observedi - Predicted)) "3 Final Bias. =1
2 d Predicted 4= iaiSaSay
. i=
dSSR_ _ dSSR__ d Predicted

d Final Bias B d Predicted  d Final Bias

0

v ;

n
ISR _ _ %' .2 (Observed;- Predicted) x1 §  Atlong ast, we have the
d Final Bias derivative of the SSR with
= respect to the Final Bias!!!

TRIPLE BAM!!!

In the next section, we’ll plug the derivative
into Gradient Descent and solve for the

optimal value for the Final Bias.

4
SSR -’]
2
i 4
k£ SSR
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Backpropagation: Step-by-Step

Now that we have the ..which tells us how the ..we can optimize
derivative of the SSR SSR changes when we the Final Bias with
with respect to the change the Final Bias... Gradient Descent.

Final Bias...

05 0
0.5 1 Final Bias

Drug Dose

0.5

S . NOTE We're leaving

n ‘:1
3 " the “x 1” term in the
dSSk_ _ 2-2 x (Observed; - Predicted;) x 1 ‘ derivative to remind us

gilainl Bias that it comes from The:
Chain Rule. However,
multiplying by 1
doesn’t do anything,

and you can omit it.

First, we plug in the Observed values from
the Training Dataset into the derivative of

the SSR with respect to the Final Bias.

n
9SSR Z -2 x (Observed; - Predicted)? x 1
d Final Bias

Effectiveness =-2x (-Observed1 - Predicted; ) x 1

0.5 1%

+ -2 x ( Observed: - Predictedz ) x 1
Drug Dose L d

+ -2 x ( Observeds - Predicteds ) x 1

d SSR

— ) X (0 i - Predicted+ ) x 1
d Final Bias :

+-2x(:1:-Predictedz) x 1
+-2x(:0:- Predicteds ) x 1
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Backpropagation: Step-by-Step

Then we initialize the Final Bias to a random

value. In this case, we'll set the Final Bias to 0.0.

A
Then we run the 3 Doses from the Training
Dataset, 0, 0.5 and 1, through the Neural ...ano! we plug the
Network to get the Predicted values.... Predicted values
=, % into the derivative.
; 1 oo
Py, 'l S .,..’
: c.,._) IX . o «
: ¥
05 1 7 0 % %
Drug Dose s 0.5 1
| Drug Dose
nput & x 1.30

QOutput

d SSR

»
*e

=-2x(0- Predicted ) x 1
d Final Bias
+ -2 x (1 - Predicted ) x 1

+ -2 x(0 - Predicted ) x 1

=-2x(0-i0.57%) x 1
+2x(1-i1.613) x 1
+-2x(0-i0.58%) x 1

------ i



Backpropagation: Step-by-Step

Now we evaluate the derivative at When we do -..thus, when the Final
the current value for the Final Bias, the math, we Blas 0, the slope of
which, at thns pomt is 0.0.

get 3. 5 this tangent Ime is 3.5.
i d SSR Ty
My — 0% (0- 057 )x1 ¥ :
. dF,na’B,as .uuuuuu-: ':
B +2x(1-161)x1¢ =3.5; :
s tasmsssasssss T
+-2x(0- 058 )x1
)
sum [+ ‘
4
SSR
2
NOTE: In this , :
Thep we gaiculate the Step example, we've Gentle Reminder:
Size with the standard set the Learning | The magnitude of
equation for Gradient Rateto 0.1. §* the derivative is
Descent and get 0.35. H proportional to
c e : o how big of a step
Step Size = Derivative x Learning Rate 4 we shauld take
_ toward the
=25%0:1 minimum. The sign
yeraaRg -
2 H (+/-) tells us in
'035 - what direction.

Lastly, we calculate a new value for the
Final Bias from the current Final Bias...

New Bias = Current Bias - Step Size

Remember, we ,+*** "
initialized the Fmal 035' .. -.and the new Final

I ..-=** Bias is -0.35, which
Bias to 0.0. A results in a lower SSR.

-0.5 0 0.5
Final Bias
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Backpropagation: Step-by-Step

With the new value for \_/-‘...we shift the green squiggle down a
the Final Bias, -0.35... bit, and the Predicted values are closer
Y %  tothe Observed values.

.
. -
)

R i1 BAMM

&

¥
1
sumf: 0.9 ]

0.5 1
Drug Dose
Now Gradient Descent .= Evaluate the derivative
iterates over the past ****** at the current value...
three steps...
...and after 7 iterations, Calculate the
Step Size...

the Final Bias = -0.58...

Calculate the
new value...

sums 059

...and the green squiggle
fits the Training Mand we've made it to
really well... the lowest SSR. BAM"'

s
v

-0.5 0 0.5
0.5 1 h i
Drug Dose Final Bias

268



Neural Networks: FAQ

Where the heck did this bump in the
green squiggle come from?
When we used Backpropagation to estimate the
.. Weights and Biases in the Neural Network, we
. only calculated the SSR for the original 3 Doses,

0,0.5,and 1.

That means we only judge the green squiggle by
how well it predicts Effectiveness at the original 3
Doses, 0, 0.5, and 1, and no other Doses.

0.5
Drug Dose

A
And that means the green squiggle can do whatever it wants in between the
original 3 Doses, including making a strange bump that may or may not make good
predictions. This is something | think about when people talk about using Neural
Networks to drive cars. The Neural Network probably fits the Training Data really
well, but there's no telling what it’s doing between points, and that means it will be
hard to predict what a self-driving car will do in new situations.

Wouldn't it be better if the green
squiggle was a bell-shaped curve
fit to the Training Data?

’

Maybe. Because we don't have any
\4 data between the 3 Doses in the
Training Data, it's hard to say what
the best fit would be.

0
0.5
Drug Dose

When we have Neural Networks, which are cool and super flexible, why
would we ever want to use Logistic Regression, which is a lot less flexible?

Neural Networks are cool, but deciding how many Hidden Layers to use and how

many Nodes to put in each Hidden Layer and even picking the best Activation
Function is a bit of an art form. In contrast, creating a model with Logistic
Regression is a science, and there’s no guesswork involved. This difference means
that it can sometimes be easier to get Logistic Regression to make good predictions

than a Neural Network, which might require a lot of tweaking before it performs well.

Furthermore, when we use a lot of variables to make predictions, it can be much
easier to interpret a Logistic Regression model than a Neural Network. In other
269

words, it's easy to know how Logistic Regression makes predictions. In contrast, it's
much more difficult to understand how a Neural Network makes predictions.
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Appendix A: Pie Probabilities

We're in StatLand, where 70% of the In other words, 7 out of 10 people in
people prefer pumpkin pie and 30% of  StatLand, or 7/10, prefer pumpkin pie,
the people prefer blueberry pie. and the remaining 3 out of 10 people,

Pumpkin Pie Blueberry Pie or 3/10, prefer blueberry pie.

NOTE: In this case, randomly
meeting one person who prefers
pumpkin or blueberry pie does |
not affect the next person’s pie
preference. In probability lingo,
we say that these two events,
discovering the pie preferences
from two randomly selected

@ Now, if we just randomly ask someone which people, are independent. If, for

type of pie they prefer, 7 out of 10 people, or some strange reason, the second
7/10ths of the people, will say pumpkin... person’s preferer?ce e
influenced by the first, the events
would be dependent, and,

*
~,
.
.
Y

A ...and the unfortunately, the math ends up
7/ 1077 remaining 3 out being different from what we
; of 10 people, or show here.

.. 3/10ths, will say

‘ blueberry.
¥ Thus, the probability that two
3/10 ‘ people in a row will prefer
pumpkin pie is 7/10ts of the
Iso

original 7/10ts who preferred
pumpkin pie, which is 7/10 x
7/10 = 49/100, or 49%.

LY
e

..only 7/10ths will be
foIIowed by people who a
prefer pumpkin ple

Of the 7/10ts of Y
@ the people who ;1}‘]7

K

say they prefer
pumpkin pie.. 0.7x0.7=0.49

‘l.l

4
/wy‘v ‘ BAM!!!




Appendix A: Pie Probabilities

274

happens when we ask a third  that the first two people prefer pumpkin pie

@ Now let’s talk about what Specifically, we’ll talk about the probability
person which pie they prefer. and the third person prefers blueberry.

0
+

I'V'V O
@ And to find 3/10ths of the

49/100ts who preferred
pumpkin pie, we multiply:
..only 3/10%s wil 3/10 x 49/100 = 147/1,000.

First, we just saw on the
previous page that we will
meet two people who both

In other words, when we
o be followed by '
prefeor pumpklr? pie only people who prefer ask thret_a random people
49% of the time, or blueberry pie their pie preferences,
49/100. -~ : ’ 14.7% of the time the first
Now, of that 5 two will prefer pumpkin pie
49/100.~ e eriens and the third will prefer
T, blueberry. 4
a 444 \"l ¥ i
0.7x0.7 = 0.49 *73/10 ‘..)“‘
ft 7/1077 ‘ ¥
/ 0.7 x 0.7 x 0.3 = 0.147

DOUBLE BAM!!!

Probability was invented in
order to figure out how to
win games of chance in the
16th century.




Appendix A: Pie Probabilities

The probability that the first
person says they prefer blueberry .......... >
pie and the next two say they

prefer pumpkin is also 0.147.

0.3x0.7 x0.7 = 0.147

Lastly, the probability that the
first person prefers pumpkin pie, ...,
the second person prefers Y A ‘ A
blueberry, and the third person

prefers pumpkin is also 0.147.

o
"

s,
o .
. s
s
.
.

o1 85044

0.7 x0.3 x 0.7 = 0.147

fL 711077 ‘ m “’)“

0.7x0.3=0.21

TRIPLE
BAM!!!
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Appendix B:

The Mean, Variance, and Standard Deviation

276



Appendix B: The Mean, Variance,

and Standard Deviation

Imagine we went to all 5,132 ...but because there’s a lot

Spend-n-Save food stores and of overlap in the data, we
counted the number of green can also draw a Histogram
apples that were for sale. We could of the measurements. "
plot the number of green apples at :
each store on this number line... I

K
0 20 40
Number of apples 0 20 40

Number of apples

...then, first, we need to
calculate the Population

...+ Mean to figure out
"" where to put the center
of the curve.

Because we counted the number of green
apples in all 5,132 Spend-n-Save stores,
calculating the Population Mean, which is
frequently denoted with the Greek character
M (mu), is relatively straightforward: we
0 20 40 simply calculate the average of all of the
measurements, which, in this case, is 20.

-
.

If we wanted to fita
Normal Curve to the

" datalike this...

. Sum of Measurements i
Population Mean =y = 2
Number of Measurements
\4
2+8+...+37

Because the Population = - =20

Mean, y, is 20, we center

1l

he Normal Curve over 20.

.
.

Now we need to determine the
width of the curve by calculating
the Population Variance (also

called the Population Variation)
and Standard Deviation.

2
.

0 20 40 ‘
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Appendix B: The Mean, Variance,

and Standard Deviation

In other words, we want to calculate how The formula for calculating
the data are spread around the Population the Population Variance is...

" Mean (which, in this example, is 20).

o

Population E (x - p)2

7 Variance = —
: u=20
i ...which is a pretty fancy-looking
5 formula, so let’s go through it
L IO-OCIOILDO SrEEeata e

0 P 20 . 40
f ) I d

The part in the parentheses, x - i,
means we subtract the Population

Mean, y, from each measurement, x.

Population 0 Y 20 © 40
Variance = % A
. S 7
For example, the first measurement is 2, Y
so we subtract p, which is 20, from 2...  (2-20) (8-20) (28 - 20)
...then the square _ _‘."" d J’ J’
y,  tellsustosquare (2-202 (8-20) (28 - 20)2
*vaee+" gach term... . J{ J{
weaneay 4"-‘. ...and the Greek ..-"(2 -202+(8-202+ ... +(28-20)2
Z ? “Ebankt E (Slgmi 16l Number of Measurements
....... ; us to add up all of the =» 4
terms... :
...and lastly, we want the average of .,.-"'
the squared differences, so we divide """-'---._.
by the total number of measurements, ey
n, which, in this case, is all Spend-n-
Save food stores, 5,132, o
Population ...........0.,

Variance =: —
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Appendix B: The Mean, Variance,

and Standard Deviation

Now that we know hov_rv to ® when we do the Nope,
calculate the Population math, we get 100. BAM? yet.
Variance... o
Population Z (x-p)2 (2-201+(8-202+... +(28-20)
Variance ~ n AT 5132 = ﬂf
Because each term in the "..the units for the result,~*" /7-..and that means
@ equation for Population 100, are Number of we can’t plot the
Variance is squared... Apples Squared... Population
Variance on the
graph, since the
units on the x-axis
are not squared.
U= 20 _.'
To solve this problem, we _:'
take the square root of the
Population Variance to get (O ®) (({0).00 ((88D,0]
the Population Standard 0 20 40
Deviation... Number of apples ..., ...

...and because the
Population Variance

Variance

Standard Deviation
is 10...

Deviation

Population _ 2 -
Standard — J ZM _ 4/ Population A/ 100 =10  is100, the Population
n

...and we
@ can plot that
on the graph.
Now we haveagraphthat & = 00 0 T e
shows the Population
Mean, 20, plus and minus 0 20 40
the Population Standard Number of apples

Deviation, 10 apples, and
we can use those values
to fit a Normal Curve
to the data.

NOTE: Before we move on,
| want to emphasize that we
almost never have the

20 40 population data, so we
Number of apples almost never calculate the

0
' ' ' Population Mean,
Variance, or Standard
EEE Deviation. Read on to learn

what we do instead!
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Appendix B: The Mean, Variance,

and Standard Deviation

Instead of calculating Population Estimating the Population

@ Parameters, we estimate them Mean is super easy: we just

from a relatively small number of calculate the average of the
measurements. measurements we collected...

o PPPTTLLILELLEETS "au e,
‘."’. o _,.-\".'.: Shany

& - ., Estimated  Sum of Measurements

., Mean = Timber of Measurements
0 20 40
Number of apples o

Y
= 3+13+19+24+29 176
5 ¥

s

...and when we'do the

NOTE: The Estimated Mean, which is
often denoted with the symbol X (x-bar),
is also called the Sample Mean... ",

...and due to the relatively small
number of measurements used to
calculate the Estimated Mean, it’s .,
different from the Population Mean. '-._

A lot of Statistics is dedicated to
quantifying and compensating for the
differences between Population
Parameters, like the Mean and
Variance, and their estimated
counterparts.

-
. .
Tteny,anett

Now that we have an Estimated Mean, we can calculate an
Estimated Variance and Standard Deviation. However, we have
to compensate for the fact that we only have an Estimated Mean,
which will almost certainly be different from the Population Mean.

Thus, when we calculate the Estimated ...we compensate for the
Variance and Standard Deviation difference between the
using the Estimated Mean... Population Mean and the

Estimated Mean by dividing

by number of measurements
14 . minus 1, n - 1, rather than n.
- Estimated = .
i - 2 - 2 e
Estimated _ Z(X Xx) pe— E(X X) o

Variance ~ WY Deviation n-1 """:-"".':

.
e, .®
e .
by ass®

e,
hEL LT
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Appendix B: The Mean, Variance,

and Standard Deviation

NOTE: lf we had |
Now when we plug the T -
@ data into the equation for divided by n, instead
of n -1, we would

X=17.6 have gotten 81.4,
which is a significant
underestimate of the

the Estimated Variance...
A
Estimated _ Z(x -X)?
Variance = Tp -1

true Population
Variance, 100.

¥
_ (B-17.6P+ (13- 17.61 + (19- 17.6¢ + (24 - 17.62+ 20 - 1762 __ .
5-1 E
...we get 101.8, which is a pretty good
estimate of the Population Variance, **»-..., |
which, as we saw earlier, is 100. "ttt LTI PPRRRAREES (e
Lastly, the Estimated Standard ...50, in this example, the
Deviation is just the square root Estimated Standard Deviation ,
of the Estimated Variance... is 10.1. Again, this is relatively ~ *,

close to the Population value we
calculated earlier.

Estimated = .
Standard - E_(X AE E‘ft".“ated =1/101.8 =101 €=~
Deviation n-1 ariance

...which isn’t too far off from
.=+ the true Population

;" distribution in green, with

Mean = 20 and Standard

Deviation = 10.

The Estimated Mean, 17.6,
and Standard Deviation,

10.1, correspond to the

purple Normal Curve...

TRIPLE BAM!!!
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Appendix C:

Computer Commands for Calculating
Probabilities with Continuous
Probability Distributions
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Appendix C: Computer Commands for
Calculating Probabilities with

Continuous Probability Distributions

Given this Normal Distribution, -.let’s talk about ways we can
with Mean = 155.7 and get a computer to calculate the
Standard Deviation = 6.6. area under the curve between

142.5 and 155.7.

However, before we get
into the specific
commands that we can
use in Google Sheets,
Microsoft Excel, and R,
we need to talk about
Cumulative Distribution
Functions.

142.5 cm 155.7 cm 168.9 om
Height in cm.

A Cumulative Distribution Function
(CDF) simply tells us the area under
the curve up to a specific point.
For example, given this Normal Distribution with
Mean = 155.7 and Standard Deviation = 6.6, a s
Cumulative Distribution Function for 142.5 Lt uase, s
: areais 0.02.
would tell us the area under the curve for all x-axis

values to the left of, and including, 142.5.
: : Bam.

| ] | ] | ]
142.5 cm 155.7 cm 168.9 cm
Height in cm.
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Appendix C: Computer Commands for
Calculating Probabilities with

Continuous Probability Distributions

Likewise, the Cumulative
Distribution Function tells us
that the area under the curve to

the left of, and including, the
mean value, 155.7, is 0.5.

...and that makes sense
because the total area under
the curve is 1, and half of the
area under the curve is to the
left of the mean value.

L | L L}
142.5cm 155.7 cm 168.9 cm

If we want to calculate this area
under this Normal Distribution, :..
from 142.5 to 155.7... 4

142.5 cm 155.7 om 168.9 om

...then we start by using a Cumulative Distribution
Function to calculate the area all the way up to and

including 155.7, which is 0.5... -\

...and we subtract the
area under the curve up
to 142.5, which is 0.02...

o
5
o
&
o
+
o
of
+

1425 cm 155.7 cm 168.9cm 7 ..and when we
do the math, we
get 0.48.
v
0.5-0.02 = 0.48

&
142.5 cm 155.7 cm 168.9 cm
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Appendix C: Computer Commands for

Calculating Probabilities with
Continuous Probability Distributions

Now, if we want to do those calculations
with Google Sheets or Microsoft Excel,
we use the NORMDIST() function.

v X
T T P SRR R RO L
Al - i =norndist(155.7, 155.7, 6.6, 1) - normdist(142.5, 155.7, 6.6, 1)
- | A trrrmrretermrsssasssssssslesssssessssssssesbesiesanssana e |
1| 0.4772498681
2
The NORMDIST() function
takes 4 arguments:

e
"raay,
.~
e LT s
T
BRREED)
"

\ |
normdist( x-axis value, mean, standard deviation, use CDF)
A A x A
...the x-axis value that ;
we want to calculate the H 3
..the Standard

area under the curve to

the left of, and including;
Deviation, which in

in our example, this
means we set this to W ; ;
sither 155.7 or 142.5.. HisSampe 36 L0
...the Mean of
the Normal ...and either 0 or 1, depending on
whether or not we want to use

the Cumulative Distribution
Function (CDF). In this example,
we set it to 1 because we want to
use the CDF.

Distribution,
which in this
example is
155.7...

285



Appendix C: Computer Commands for
Calculating Probabilities with

Contmuous Probablllty Dlstrlbutlons

Gentle Remlnder about the arguments for the NORMDIST() function:

! normdist( x-axis value, mean, standard deviation, use CDF)

Now, if we want to use ...we start by using
NORMDIST/() to calculate NORMDIST() to ...and then use
the area under the curve calculate the area all NORMDIST() to
between 142.5 and ,{ the way up to and subtract the area
155.7... "+ including 185.7... under the curve up
PSR | 7 to142.5and the
normdist( 155.7, 155.7, 6.6, 1) o f TRRURISOMR
4 4 v

: - normdist( 142.5, 155.7, 6.6, 1) = 0.48

DOUBLE
BAM!!

142.50m 155.7cm 168.9cm

142.5¢m 155.7cm 168.90m

In the programming language called
e R, we can get the same result using I R I PI E
the pnorm() function, which is just

like NORMDIST/(), except we don’t

need to specify that we want to use a
BAM!!!
EEE

pnorm(155.7, mean=155.7, sd=6.6)

- pnorm(142.5, mean=155.7, sd=6.6) = 0.48
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Appendix D:

The Main Ideas of Derivatives
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Appendix D: The Main Ideas of Derivatives
@ @ One way to understand the
relationship between Test
Scores and Time Spent

Studying is to look at changes

Imagine we
collected Test
Scores and Time
Spent Studying ...and we fita ! (
from 3 people... straight line to in Test Scores relative to
X the data. * changes in Time Spend
Test Score ,. b Test Score B Test Score BHaying
b : . a7 : - In this case, we see
that for every unit
g increase in Time,
1 there is a two-unit
increase in Test

Score.

: In other words,

in ez WE CAN say we

: «* go up 2 for every
1 we go over.

1“
.

Time Spent Studying

| | |
Time Spent Studying

| | 1
Time Spent Studying

NOTE: The relationship “2 up

for every 1 over” holds even if
we only go over 1/2 unit.
Test Score {_\/
In this case, we see that for

every half-unit increase in Time,
thereisa 2 x 0.5 =1 unit
increase in Test Score.
Because the “2 up for every 1 over” relationship
holds no matter how small a value for Time
Spent Studying, we say that the Derivative of
Test Score , this straight line...

Npmenit® ...is the change in Score
""" (d Score) relative to the change
in Time (d :rime), which is 2.

Time Spent Studying

K

o 14
d Score _ >
o d Time " Now let's talk about
Foeeiii™™ how the Derivative is
related to the
straight line.
Time Spent Studying
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Appendix D: The Main Ideas of Derivatives

Here is the
equation for thvif The slope
straight line. is 2
Test Score ‘._....--"
i A 14
Score = 1/2 + (2 x Time)
. A
"-, ...and the y-
™., axis intercept
1 eisr2,
&

Time Spent Studying

Now let’s stop talking about
Studying and talk about Eating. This
line has a slope of 3, and, regardless
of how small a value for Time Spent
Eating, our Fullness goes up 3 times

that amount.

e

Thus, the Derivative,

the change in Fullness
.+ relative to the change
in Time, is 3.-.,

Fullness #

L
PUTIILIIeN

e
" "

1t a dFullness _, K:
d Time

Time Spent Eating

@

Test Score

When the straight line is vertical, and =
the x-axis value never changes, then
the Derivative is undefined. This is
because it’s impossible to measure the
change in the y-axis value relative to
the change in the x-axis value if the x-
axis value never changes.

7

d Score -
d Time

Time Spent Studying

©

When the slope is
0, and the y-axis

value never «====eee,, |

changes, -
regardless of the
x-axis value...
...then the
Derivative, the
change in the y-axis
value relative to the
change in the x-axis

Thus, we see that the slope, 2,
is equal to the Derivative, 2,
and both tell us to go “2 up for

every 1 over.”

; peoens &
Score = 1/2 +§(2 x:Time)

...:’
aman®®

-
LI

e

£
2

Height of the
Empire State
Building

d Height  _
d Occupants

value, is 0. **srevuiuauns

{

Number of Occupants

y-axis

X-axis

=0
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Appendix D: The Main Ideas of Derivatives

Lastly, when we have a curved
line instead of a straight line...

Awesomeness

the curved line at a single point.

...the Derivative is the slope of any
straight line that just barely touches

T T

Likes StatQuest s

Terminology Alert! | tangent .y <«
erminology Alert:: Awesomeness| | ines = Slope=5 &

A straight line that

i touches the curve at a
¢ single pointis called a
Tangent Line.

Likes StatQuest

Unfortunately, the Derivatives of curved
lines are not as easy to determine as

they are for straight lines.

However, the good news is that in
machine learning, 99% of the time
we can find the Derivative of a
curved line using The Power Rule
(See Appendix E) and The Chain
Rule (See Appendix F).

- BAM!!I

Awesomeness

T T
Likes StatQuest
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Appendix E:

The Power Rule

NOTE: This appendix assumes that you’re already
familiar with the concept of a derivative (Appendix D).
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Appendix E: The Power Rule

In this example, we have a parabola that represents the
relationship between Awesomeness and Likes StatQuest.
This is the equation for
T ¥ the parabola:

‘:‘. "
L+ Awesomeness = (Likes StatQuest)?

Awesomeness ] o

the change in Likes StatQuest...

o
o
LEEET PPt

H = d
: — AW ESOMENESS

T T 1 : 4
Likes StatQuest : d Likes StatQuest <

o
+

0

...by first plugging in the .
B equation for Awesomeness... *,

b (TTioe

wammmraa,
. aset® ey,
. ass .
Taananst® 0\

d ; >
The Power Rule tells us to d Likes Statouest(lees oigiCmast
multiply Likes StatQuest by the
power, which, in this case, is 2... ...and then applying The Power Rule.

~

s

"
.

vy
—_— (Likes StatQuest)? = 2 x Likes StatQuest?- <«
d Likes StatQuest Recommemmnomasosocaenc . el “and raise Likes
| A 2 x Likes StatQuest : StatQuest by the original
3 : power, 2, minus 1...

...and since 2_1'= 1, [ S @ For example, when Likes StatQuest = 1, the

derivative, the slope of the tangent line is 2.

the derivative of

Awesomeness with : .
respect to Likes - :

StatQuest is 2 times : M =
Likes StatQuest. : d Likes StatQuest

= 2 x Likes StatQuest .~

............... *

BAM!!

Now let’s look at a
fancier examplel!!

Awesomeness
=

LA —
o == Likes StatQuest

,»'. We can calculate the derivative, the .,
4 : change in Awesomeness with respect to*,

CLb
B o
D

3

.e

LT

.
.
Tenmunnr

e



Appendix E: The Power Rule

Here we have a graph of how
Happy people are relatlve to
how Tasty the food is..

L
»
b

“.,. _ Happiness

o .

..and this is the equation
for the squiggle: -,

b—
Happy =1+ Tastya @

Index

: We can calculate the
& ko ..+ derivative, the change

fesi, O o o in Happiness with
Feu..... _f"esl YUM"' e respect to the change

4 e v in Tastiness...
Tasty Food d Haj
Index ! 1 SERRY € g appy
H d Tasty d Tasty
m | ". ..by plugging in
Cold, greasy fries from . et the Sty

yesterday. Yuck. =

o Happy...
A ¥
J (1 + Tasty?)
d Tasty

...and taking the
derivative of each
: term in the equation.

(1 + Tasty?) = : d Tasty3 5
d Tasty Tasty d Tas —_—
The constant value, 1, doesn’t The Power Rule tells us to
change, regardless of the value multiply Tasty by the pawer,
for Tasty, so the derivative with 3 which: n'this cdse & 3 '
respect to Tasty is 0. J
d -
ST d >V ...and raise
& Tadty Tasty® = 3 x Tasty®! <+=:, Tasty by the
Lastly, we =3 x Tasty? A orlglna.\I power,
recombine both 3, minus 1.
terms to get the
final derivative. Heppitiess
Ha =0 + 3 x Tasty? Index
d Tasty PRy Y
= 3 x Tasty2
Now, when " g 3# ty? e /
Tasty = -1, ° X Tasty i -
the slope of diasty: ‘V/
the tangent =3x-12=8+"" il
2 \/ J BAM!!!

line is 3.
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The
Chain
Rule!!!

NOTE: This appendix assumes that you're already
familiar with the concept of a derivative (Appendix D)
and The Power Rule (Appendix E).
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Appendix F: The Chain Rule

Here we have
Weight and Height ...and we fit a line
measurements to the data.
from 3 people... 7

H Height <3 ¢

Height

.,
s,

2
¥

I P Y
. . that they’re this tall.
Weight Weight S Height :

®

Shog Size

2.
-
O
o+
o

Here we have Height
and Shoe Size
measurements...

[y
.

-
D
.
G
. .
.
D
¥
D

] ¥ "*.

Now, if someone tells us that
they weigh this much...

)
"s.
.
.
.

...then we can use the
green fitted line to predict

(@) '
' Weight
L]
Height
...and we can use an orange
fitted line to predict Shoe Size
from a Height measurement. g
o a4
The Chain

+*s
)

Rule is cool!!!

Shoe Size RS

Yeah!!!



Appendix F: The Chain Rule

>..then we can predict that/’. ..because Weight
tells us that they this is their Shoe Size... and Shoe Size are
weigh this much... E

Now, if someone

.
was®

L}
% Weight e

.
0 o
as®

Because this straight
line goes up 2 units
for every 1 unit over,

b the slope and

derivative are 2...

0
L
tanggannt

I
5 i2  dHeight _,

: dWeight

Height is:

connected by
Height...

ShoeSize | (

3

% .
.

.

.

B
annnay pas
b i . A g
* "Erapaaaanet® Tranan i

...and that means
the equation for

L] L}
Height v =

...and if we change the value for Weight, like
make it smaller, then the value for Shoe Size
changes. In this case, Shoe Size gets smaller, too.

Height

Weight
Now, if we want to quantify how much Shoe
Size changes when we change Weight, we
need to calculate the derivative for Shoe Size
with respect to Weight.

ight
gt e L RAE
. dWeight

v .

x Weight = 2 x Weight

Likewise, this straight line goes up 1/2
@ units for every 2 units over, so the

slope and derivative are 1/4.../\
LS

Shoe Size e

o
o

°.* ...and that means

) the equation for
F dSize _ 12 _1 Shoe Size is:
[ dHeight 2 4

2 A1 A B

TR < ) Size . 1 )
T T 1 Shoe Size = == x Height = == x Height
Height d Height 4
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Appendix F: The Chain Rule

Now, because Weight ..and Height can
can predict Height... predict Shoe Size.. /N

o3, o, ..we can plug the
equatlon for Height
Ld i 4 A - 4 into the equation for
Height = s Weight Shoe Size = x Height Shoe Size.
-... d Weight d Height .y :
----- U ATEETRG

EShoe Size = dS_l‘ze X m x Weight :
: d Height  d Weight .

And if we want to determine how ...we solve for the derivative of
Shoe Size changes with respect Shoe Size with respect to Weight...
to changes in Weight... :

Hei v
dSize _ dSize « d Height
d Weight  d Height d Weight
Y
...and, using The Power Rule (or
realizing that when we change Weight,
we multiply it by both derivatives to get
the new Shoe Size), we end up with the
— derivative of Shoe Size with respect to
Height multiplied by the derivative of
‘ Height with respect to Weight.

In other words, because we can link the
two equations with a common variable, in
this case, Height, the derivative of the
combined function is the product of the
individual derivatives.

@ Finally, we can plug in _/_\A

values for the derivatives... ...and we see that when Weight
increases by 1 unit, Shoe Size

Ge}ltle. Reminder: “"ﬂhm“"'"i A nereases tfy 2.
d Height = dSize _ dSize ; d Height
d Weight d Weight d Height d Weight
dSize _ 1 1 1 o
; -7 S XD = - i _—
d Height 4 A 5




Appendix F: The Chain Rule,

A More Complicated Example

Now imagine we measured how So, we fit a quadratic line with an
Hungry a bunch of people were intercept of 0.5 to the measurements to

and how long it had been since reflect the increasing rate of Hunger.
they last had a snack.

Hunger Hunger
- (@] = & :
) ® | \
(o) } Hunger = Time2 + 0.5
o % The more Time that E
@ «.... * hadpassedsince
1@ ""**=their last snack, the | .
hungrier they got!
Time Since Time Since
Last Snack Last Snack
Likewise, we fit a square CNOW wle wgnt to sehe how
root function to the data e sl SanCances
that shows how Hunger is relative to Time Since Last
related to craving ice cream. Snack.
C,-gves lce 5. ~-........,_ ~ Craves Ice
ream 6. Ehe

Craves Ice Cream = (Hunger)'/2

Hunger

Time Since
Last Snack

Unfortunately, when we plug the e
@ equation for Hunger into the  Hunger =iTime2 + 0.5 :=xx-..,
equation for Craves Ice Cream..: 2

Craves Ice Cream = (Hunger)'/2
4
Craves Ice Cream = (Time2 + 0.5)1/2

B
xnmns®
o

...raising the sum by 1Ié makes
it hard to find the derivative with
The Power Rule.




Appendix F: The Chain Rule,

A More Complicated Example

However, because Hunger links
Time Since Last Snack to Craves
Ice Cream, we can solve for the

derivative using The Chain Rule!!!

Hunger

The Chain Rule tells us that the
derlvatlve of Craves Ice Cream
with respect to Time...

Craves Ice
Cream

..is the derlvatlve of
Craves Ice Cream W[th
respect to Hunger. =

dCra ves d Craves d Hunger
dTime d Hunger d Time
P

)
.
.

~.multiplied by the
denvatwe of Hunger
with respect to Time.

3 ke — gX; ] First, The Power Rule tells us

 Last Snack ¥ tha}t the derlvatlvq of Hunger
i with respect to Time is this

Hunger i equation:
Likewise, The Power Rule tells us that et e,

@ the derivative of Craves lce Cream with Hunger =Time2 + 0.5

respect to Hunger is thisequation: | & seesesessmssrersereines -

s d Hunger N

: : g =2xTime :

: : d Time :

Craves Ice Cream = (Hunger)'/2 \4 Tire | TrrTtises e sseanesnnas ;

Craves i dCraves
id Hunger

Hunger

Now we just plug
the derivatives into
The Chain Rule..:

d Craves

d Craves d Hunger

=1/2 x Hunger -122:

1

T 2x Hungert/2

Femsmnnnn smamnn amsmnnnn CECETTTTTT wee

dTime d Hungerx

1

= m—x (2 x Time)

2 x Hunger'2

2 x Time
2 x Hunger'2

dCraves _ Time
: " Time

" Hunger'”2

d Time

...and we see that when
there’s a change in Time
Since Last Snack, the
change in Craves Ice
Cream is equal to Time
divided by the square
root of Hunger.

NOTE: In this example, it was
obvious that Hunger was the link
between Time Since Last Snack and
Craves Ice Cream, which made it
easy to apply The Chain Rule.

However, usually we get both
equations jammed together like
this...

Craves Ice Cream = (Time2 + 0.5)12

...and it's not so obvious how The
Chain Rule applies. So, we'll talk
about how to deal with this next!!!

BAM!!!
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Appendix F: The Chain Rule,

When The Link Is Not Obvious

300

In the last part, we said that raising the
sum by 1/2 makes it difficult to apply
The Power Rule to this equation...

R ;
e

4 .
Craves Ice Cream (Time2 + 0.5)12

..but there was an obvious way to link Time to
Craves with Hunger, so we determined the
derivative with The Chain Rule.

However, even when there’s no obvious way to
link equations, we can create a link so that we
can still apply The Chain Rule.

Now that we’ve created Inside,
the link between Time and

Craves, we can apply The
Chain Rule to solve for the derivative.

The Chain Rule tells us that the

®

First, let's create a link
between Time and Craves

Ice Cream called Inside,
which is equal to the stuff inside
the parentheses...

Inside = Time2 + 0.5

...and that means Craves Ice
Cream can be rewritten as the
square root of the stuff Inside.

Craves Ice Cream = (Inside)2

Now we use The Power Rule to
solve for the two derivatives.

d Craves _ d
derivative of Craves with respect dInside  d Inside (Inside)2 = 1/2 x Inside -1/2
_-' to Time... 1
"~ 2 x Inside/2
dCra ves d Craves d Inside "
X .
d Time d inside . dTime ~ dInside _ d o, 05-2xTime
A d Time d Time i
..is the derlvatlve ..multiplied .by the ;
of Craves with derwatlve of Inside £ Craves e Craves = m?lde
respect to Inside.Z.  with respect to Time. dTime _ dlnside " d Time
d Craves 1 @xT )"
: = - x (2 x Time
Lastly, we plug them d Time 2 xInside!”2
into The Chain Rule... 2 x Time
...and just like when the link, "~ 2 x Hunger'2
Hunger, was obvious, when we dc ............... T |me ..... ;
created a link, Inside, we got the : Saves :
exact same result. BAM!! dTime  Hunger'z :

.
pLLTNE

#When there’s no obvious link,

e 4

we can make one out of stuff

that is inside (or can be put
inside) parentheses.

DOUBLE BAM!!!
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Activation Function 237, 239
AUC 158-159

Backpropagation 252-268
Bias-Variance Tradeoff 16, 221
Biases 254

Binomial Distribution 38-44
Branch (Decision Tree) 185
Confusion Matrix 138-142
Continuous Data 19

Continuous Probability Distributions 48
Cost Function 88

Data Leakage 23

Dependent Variables 18

Discrete Data 19

Discrete Probability Distributions 37
Exponential Distribution 54

False Positive 70

False Positive Rate 146

Feature 18

Gaussian (Normal) Distribution 49-51
Gini Impurity 191-192

Hidden Layer 238

Histograms 32-35

Hypothesis Testing 71

Impure 190

Independent Variables 18

Internal Node (Decision Tree) 185
Layers (Neural Networks) 238
Leaf (Decision Tree) 187

Learning Rate 94
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Loss Function 88

Margin 224

Mean Squared Error (MSE) 61-62
Mini-Batch Stochastic Gradient Descent 106
Models 56-57

Nodes (Neural Networks) 237
Normal (Gaussian) Distribution 49-51
Null Hypothesis 71

Overfitting 16

p-values 68-72

Parameter 92

Poisson Distribution 46
Polynomial Kernel 227-231
Probability Distributions 36
Probability vs Likelihood 112-114
Precision 144

Precision Recall Graph 161-162
R2 (R-squared) 63-67

Radial Kernel 232

Recall 144

ReLU Activation Function 239
Residual 58

ROC 147-157

Root Node (Decision Tree) 185
Sensitivity 143

Sigmoid Activation Function 239
Soft Margin 224

SoftPlus Activation Function 239
Specificity 143

Stochastic Gradient Descent 106
Sum of Squared Residuals (SSR) 58-60
Support Vector 224

Support Vector Classifier 224
Tangent Line 291

Testing Data 13

Training Data 13

True Positive Rate 146
Underflow 118, 131

Uniform Distribution 54

Weights 254
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